Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Are Performance Differences of Interest Operators Statistically Significant?

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 6855))

  • 2665Accesses

Abstract

The differences in performance of a range of interest operators are examined in a null hypothesis framework using McNemar’s test on a widely-used database of images, to ascertain whether these apparent differences are statistically significant. It is found that some performance differences are indeed statistically significant, though most of them are at a fairly low level of confidence,i.e. with about a 1-in-20 chance that the results could be due to features of the evaluation database. A new evaluation measure i.e. accurate homography estimation is used to characterize the performance of feature extraction algorithms.Results suggest that operators employing longer descriptors are more reliable.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1615–1630 (2005)

    Google Scholar 

  2. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and Vision 3(3), 177–280 (2008)

    Article  Google Scholar 

  3. Saag, M.S., Powderly, W.G., Cloud, G.A., Robinson, P., Grieco, M.H., Sharkey, P.K., Thompson, S.E., Sugar, A.M., Tuazon, C.U., Fisher, J.F., et al.: Comparison of amphotericin B with fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. New England Journal of Medicine 326(2), 83–89 (1992)

    Article  Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International journal of computer vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  7. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of computer vision 37(2), 151–172 (2000)

    Article MATH  Google Scholar 

  8. Ehsan, S., Kanwal, N., Clark, A.F., McDonald-Maier, K.D.: Improved repeatability measures for evaluating performance of feature detectors. Electronics Letters 46(14), 998–1000 (2010)

    Article  Google Scholar 

  9. Valgren, C., Lilienthal, A.: SIFT, SURF and seasons: Long-term outdoor localization using local features. In: Proceedings of the European Conference on Mobile Robots (ECMR), pp. 253–258 (2007)

    Google Scholar 

  10. Clark, A.F., Clark, C.: Performance Characterization in Computer Vision A Tutorial (1999)

    Google Scholar 

  11. Crease, R.P.: Discovery with statistics. Physics World 23(8), 19 (2010)

    Article  Google Scholar 

  12. Abdi, H.: Bonferroni and Šidák corrections for multiple comparisons. Sage, Thousand Oaks, CA (2007)

    Google Scholar 

  13. Perneger, T.V.: What’s wrong with bonferroni adjustments. British Medical Journal 316, 1236–1238 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. VASE Laboratory, Computer Science & Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK

    Nadia Kanwal, Shoaib Ehsan & Adrian F. Clark

  2. Lahore College for Women University, Pakistan

    Nadia Kanwal

Authors
  1. Nadia Kanwal

    You can also search for this author inPubMed Google Scholar

  2. Shoaib Ehsan

    You can also search for this author inPubMed Google Scholar

  3. Adrian F. Clark

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dpto. Matematica Aplicada I, Escuaela Técnica Superior de Ingeniería Informática, Universite de Sevilla, Avda. Reina Mercedes, s/n, 41012, Sevilla, Spain

    Pedro Real

  2. Departamento de Matemática Aplicada I, Escuela Técnica Superior de Ingeniería Informática, University of Seville, Avenida Reina Mercedes s/n, 41012, Sevilla, Spain

    Daniel Diaz-Pernil  & Helena Molina-Abril  & 

  3. Departamento de Didáctica de la Mathemática y de las CC.Experimentales, Escuela Universitaria de, Universidad del País Vasco-Esukal Herriko Unibertsitatea, Ramón y Cajal, 72, 48014, Bilbao, (Bizcaia), Spain

    Ainhoa Berciano

  4. Institute of Computer Graphics and Algorithms, Pattern Recognition and Image Processing Group, Vienna University of Technology, Favoritenstraße 9/186-3, 1040, Vienna, Austria

    Walter Kropatsch

Rights and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanwal, N., Ehsan, S., Clark, A.F. (2011). Are Performance Differences of Interest Operators Statistically Significant?. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23678-5_51

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp