Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Inapproximability of NP-Complete Variants of Nash Equilibrium

  • Conference paper

Abstract

In recent work of Hazan and Krauthgamer (SICOMP 2011), it was shown that finding anε-approximate Nash equilibrium with near-optimal value in a two-player game is as hard as finding a hidden clique of sizeO(logn) in the random graph\(G(n,\frac12)\). This raises the question of whether a similar intractability holds for approximate Nash equilibrium without such constraints. We give evidence that the constraint of near-optimal value makes the problem distinctly harder: a simple algorithm finds an optimal\(\frac{1}{2}\)-approximate equilibrium, while finding strictly better than\(\frac12\)-approximate equilibria is as hard as the Hidden Clique problem. This is in contrast to the unconstrained problem where more sophisticated algorithms, achieving better approximations, are known.

Unlike general Nash equilibrium, which is in PPAD, optimal (maximum value) Nash equilibrium is NP-hard. We proceed to show that optimal Nash equilibrium is just one of several known NP-hard problems related to Nash equilibrium, all of which have approximate variants which are as hard as finding a planted clique. In particular, we show this for approximate variants of the following problems: finding a Nash equilibrium with value greater thanη (for anyη > 0, even when the best Nash equilibrium has value 1 − η), finding a second Nash equilibrium, and finding a Nash equilibrium with small support.

Finally, we consider the complexity of approximate pure Bayes Nash equilibria in two-player games. Here we show that for general Bayesian games the problem is NP-hard. For the special case where the distribution over types is uniform, we give a quasi-polynomial time algorithm matched by a hardness result based on the Hidden Clique problem.

Full version available as arXiv:1104.3760. Research supported by NSERC. This work was done while the third author was at the University of Toronto.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Austrin, P., Braverman, M., Chlamtac, E.: Inapproximability of NP-Complete Variants of Nash Equilibrium. arXiv:1104.3760 (2011)

    Google Scholar 

  2. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. Rand. Struct. Algos. 13(3-4), 457–466 (1998)

    Article MathSciNet MATH  Google Scholar 

  3. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate nash equilibria in bimatrix games. Theor. Comput. Sci. 411(1), 164–173 (2010)

    Article MathSciNet MATH  Google Scholar 

  4. Brubaker, S.C., Vempala, S.S.: Random tensors and planted cliques. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 406–419. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player nash equilibria. J. ACM 56(3) (2009)

    Google Scholar 

  6. Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games and Economic Behavior 63(2), 621–641 (2008)

    Article MathSciNet MATH  Google Scholar 

  7. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate nash equilibria. In: ACM Conference on Electronic Commerce, pp. 355–358 (2007)

    Google Scholar 

  8. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash equilibria. Theor. Comput. Sci. 410(17), 1581–1588 (2009)

    Article MathSciNet MATH  Google Scholar 

  9. Feige, U., Krauthgamer, R.: The probable value of the lovász–schrijver relaxations for maximum independent set. SIAM J. Comput. 32(2), 345–370 (2003)

    Article MATH  Google Scholar 

  10. Frieze, A.M., Kannan, R.: A new approach to the planted clique problem. In: FSTTCS, pp. 187–198 (2008)

    Google Scholar 

  11. Feder, T., Nazerzadeh, H., Saberi, A.: Approximating Nash equilibria using small-support strategies. In: ACM Conference on Electronic Commerce, pp. 352–354 (2007)

    Google Scholar 

  12. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  13. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games and Econ. Behavior 1(1), 80–93 (1989)

    Article MathSciNet MATH  Google Scholar 

  14. Hazan, E., Krauthgamer, R.: How Hard Is It to Approximate the Best Nash Equilibrium?. SIAM J. Comput. 40(1), 79–91 (2011)

    Article MathSciNet MATH  Google Scholar 

  15. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: ACM Conference on Electronic Commerce, pp. 36–41 (2003)

    Google Scholar 

  16. Minder, L., Vilenchik, D.: Small clique detection and approximate nash equilibria. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 673–685. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comp. Sys. Sci. 48(3), 498–532 (1994)

    Article MathSciNet MATH  Google Scholar 

  18. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate nash equilibria. Internet Mathematics 5(4), 365–382 (2008)

    Article MathSciNet MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Toronto, Toronto, Canada

    Per Austrin & Mark Braverman

  2. Tel Aviv University, Tel Aviv, Israel

    Eden Chlamtáč

Authors
  1. Per Austrin

    You can also search for this author inPubMed Google Scholar

  2. Mark Braverman

    You can also search for this author inPubMed Google Scholar

  3. Eden Chlamtáč

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, University of Liverpool, Ashton Building, L69 3BX, Liverpool, UK

    Leslie Ann Goldberg

  2. Department of Computer Science, University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany

    Klaus Jansen

  3. Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, 15213, Pittsburgh, PA, USA

    R. Ravi

  4. Centre Universitaire d’Informatique,, University of Geneva,, Battelle A 7 route de Drize, 1227, Carouge, Switzerland

    José D. P. Rolim

Rights and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Austrin, P., Braverman, M., Chlamtáč, E. (2011). Inapproximability of NP-Complete Variants of Nash Equilibrium. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_2

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp