Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Exact Parameterized Multilinear Monomial Counting viak-Layer Subset Convolution andk-Disjoint Sum

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 6842))

Included in the following conference series:

  • 887Accesses

Abstract

We present new algorithms for exact multilineark-monomial counting which is to compute the sum of coefficients of all degree-k multilinear monomials in a given polynomialP over a ringR described by an arithmetic circuitC. If the polynomial can be represented as a product of two polynomials with degree at mostd < k, our algorithm can solve this problem in\(O^{*}(\binom{n}{\downarrow d})\) time, where\(\binom{n}{\downarrow d}=\sum_{i=0}^d\binom{n}{i}\).O* omits a polynomial factor inn. For the general case, the proposed algorithm takes time\(O^{*}(\binom{n}{\downarrow k})\). In both cases, our results are superior to previous approaches presented in [Koutis, I. and Williams, R.: Limits and applications of group algebras for parameterized problems.ICALP, pages 653-664 (2009)]. We also present a polynomial space algorithm with time bound\(O^{*}(2^k\binom{n}{k})\). By reducing the #k-path problem and the #m-setk-packing problem to the exact multilineark-monomial counting problem, we give algorithms for these two problems that match the fastest known results presented in [2].

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42(4), 844–856 (1995)

    Article MathSciNet MATH  Google Scholar 

  2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting paths and packings in halves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 578–586. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: STOC, pp. 67–74 (2007)

    Google Scholar 

  4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed moebius inversion and graphs of bounded degree. Theory Comput. Syst. 47(3), 637–654 (2010)

    Article MathSciNet MATH  Google Scholar 

  5. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: SODA, pp. 298–307 (2007)

    Google Scholar 

  6. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Computation 9(3), 251–280 (1990)

    Article MathSciNet MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Book MATH  Google Scholar 

  8. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33, 892–922 (2004)

    Article MathSciNet MATH  Google Scholar 

  9. Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set packing. J. Algorithms 50, 106–117 (2004)

    Article MathSciNet MATH  Google Scholar 

  10. Kennes, R.: Computational aspects of the Moebius transform of a graph. IEEE Transactions on Systems, Man, and Cybernetics 22, 201–223 (1991)

    Article MathSciNet MATH  Google Scholar 

  11. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: ICALP, pp. 575–586 (2009)

    Google Scholar 

  13. Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: STOC, pp. 321–330 (2010)

    Google Scholar 

  15. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. In: STOC, pp. 455–464 (2009)

    Google Scholar 

  16. Williams, R.: Finding paths of length k inO*(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)

    Article MathSciNet MATH  Google Scholar 

  17. Yates, F.: The design and analysis of factorial experiments, Technical Communication No. 35, Commonwealth Bureau of Soil Science, Harpenden, UK (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

    Dongxiao Yu, Qiang-Sheng Hua & Francis C. M. Lau

  2. Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, P.R. China

    Yuexuan Wang & Qiang-Sheng Hua

Authors
  1. Dongxiao Yu

    You can also search for this author inPubMed Google Scholar

  2. Yuexuan Wang

    You can also search for this author inPubMed Google Scholar

  3. Qiang-Sheng Hua

    You can also search for this author inPubMed Google Scholar

  4. Francis C. M. Lau

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, University of Texas-Pan American, 78539, Edinburg, TX, USA

    Bin Fu

  2. Department of Computer Science, University of Texas at Dallas, 75080, Richardson, TX, USA

    Ding-Zhu Du

Rights and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, D., Wang, Y., Hua, QS., Lau, F.C.M. (2011). Exact Parameterized Multilinear Monomial Counting viak-Layer Subset Convolution andk-Disjoint Sum. In: Fu, B., Du, DZ. (eds) Computing and Combinatorics. COCOON 2011. Lecture Notes in Computer Science, vol 6842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22685-4_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp