Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Multiple Collaborative Cameras for Multi-Target Tracking Using Color-Based Particle Filter and Contour Information

  • Conference paper

Abstract

Multi-target tracking is a active research field nowadays due to its wide practical applicability in video processing. While talking about Multi-target tracking, ‘multi-target occlusion’ is a common problem that needs to be addressed. Lots of work has been done using multiple cameras for handling ‘multitarget occlusion’; however most of them require camera calibration parameters that make them impractical for outdoor video surveillance applications. The main focus of this paper is to reduce the dependency on camera calibration for multiple camera collaboration. In this perspective Gale-Shapley algorithm (GSA) has been used for finding stable matching between two or more camera views, while more robustness on tracking of objects has been ensured by combining multiple cues such object’s boundary information of the object with color histogram. Efficient tracking of object ensures proficient reckoning of target depicting parameter (i.e. apparent color, height and width information of the object) as a consequence better camera collaboration. The simulation results prove the validity of our approach.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Qu, W., Schonfeld, D., Mohamed, M.: Distributed Bayesian multiple-target tracking in crowded environments using multiple collaborative cameras. EURASIP Journal on Applied Signal Processing (1), 21–21 (2007)

    MATH  Google Scholar 

  2. Bar-Shalom, Y., Jammer, A.G.: Tracking and Data Association. Academic Press, San Diego (1998)

    Google Scholar 

  3. Hue, C., Cadre, J.-P.L., P´erez, P.: Sequential Monte Carlo methods for multiple target tracking and data fusion. IEEE Transactions on Signal Processing 50(2), 309–325 (2002)

    Article  Google Scholar 

  4. MacCormick, J., Blake, A.: A probabilistic exclusion principle for tracking multiple objects. International Journal of Computer Vision 39(1), 57–71 (2000)

    Article MATH  Google Scholar 

  5. Gordon, N.: A hybrid bootstrap filter for target tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems 33(1), 353–358 (1997)

    Article  Google Scholar 

  6. Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, vol. 2, pp. 406–413 (June-July 2004)

    Google Scholar 

  7. Zhao, T., Nevatia, R.: Tracking multiple humans in complex situations. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1208–1221 (2004)

    Article  Google Scholar 

  8. Tao, H., Sawhney, H., Kumar, R.: A sampling algorithm for detection and tracking multiple objects. In: Proceedings of IEEE International Conference on Computer Vision (ICCV 1999) Workshop on Vision Algorithm, Corfu, Greece (September 1999)

    Google Scholar 

  9. Khan, Z., Balch, T., Dellaert, F.: An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 279–290. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Smith, K., Gatica-Perez, D., Odobez, J.-M.: Using particles to track varying numbers of interacting people. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, Calif, USA, vol. 1, pp. 962–969 (June 2005)

    Google Scholar 

  11. McKenna, S.J., Jabri, S., Duric, Z., Rosenfeld, A., Wechsler, H.: Tracking groups of people. Computer Vision and Image Understanding 80(1), 42–56 (2000)

    Article MATH  Google Scholar 

  12. Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams: Establishing a common coordinate frame. IEEE Transactions on Pattern Analysis and Machine Intelligence, 758–767 (2000); Special Issue on Video Surveillance and Monitoring

    Google Scholar 

  13. Chang, T.-h., Gong, S.: Tracking Multiple People with a Multi-Camera System. In: IEEE Workshop on Multi-Object Tracking (2001)

    Google Scholar 

  14. Yu, T., Wu, Y.: Collaborative tracking of multiple targets. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, vol. 1, pp. 834–841 (June-July 2004)

    Google Scholar 

  15. Wu, Y., Hua, G., Yu, T.: Tracking articulated body by dynamic Markov network. In: Proceedings of 9th IEEE International Conference on Computer Vision (ICCV 2003), Nice, France, vol. 2, pp. 1094–1101 (October 2003)

    Google Scholar 

  16. Qu, W., Schonfeld, D., Mohamed, M.: Real-time interactively distributed multi-object tracking using a magnetic-inertia potential model. In: Proceedings of 10th IEEE International Conference on Computer Vision (ICCV 2005), Beijing, China, vol. 1, pp. 535–540 (October 2005)

    Google Scholar 

  17. Cai, Q., Aggarwal, J.K.: Tracking human motion in structured environments using a distributed-camera system. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(11), 1241–1247 (1999)

    Article  Google Scholar 

  18. Kelly, P.H., Katkere, A., Kuramura, D.Y., Moezzi, S., Chatterjee, S., Jain, R.: An architecture for multiple perspective interactive video. In: Proceedings of 3rd ACM International Conference on Multimedia (ACM Multimedia 1995), San Francisco, Calif, USA, pp. 201–212 (November 1995)

    Google Scholar 

  19. Black, J., Ellis, T.: Multiple camera image tracking. In: Proceedings of 2nd IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2001), Kauai,Hawaii, USA (December 2001)

    Google Scholar 

  20. Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams: establishing a common coordinate frame. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 758–767 (2000)

    Article  Google Scholar 

  21. Hue, C., Le Cadre, J.-P., Pérez, P.: Sequential monte carlo methods for multiple target tracking and data fusion. IEEE Transactions on Signal Processing 50(2), 309–325 (2002)

    Article  Google Scholar 

  22. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–14 (1962)

    Article MathSciNet MATH  Google Scholar 

  24. http://en.wikipedia.org/wiki/Stable_marriage_problem

  25. Guraya, F.F.E., Bayle, P.-Y., Cheikh, F.A.: People tracking via a modified CAMSHIFT algorithm (2009)

    Google Scholar 

  26. Maskell, S., Gordon, N.: A tutorial on particle Filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50, 174–188 (2001)

    Google Scholar 

  27. Kitagawa, G.: Monte Carlo: Filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics 5(1), 1–25 (1996)

    MathSciNet  Google Scholar 

  28. Chen, T., Lin, Y.-C., Fang, W.-H.: A Video-Based Human Fall Detection System For Smart Homes. YieJournal of the Chinese Institute of Engineers 33(5), 681–690 (2010)

    Article  Google Scholar 

  29. Nummiaro, K., Koller-Meier, E., Gool, L.V., Gaal, L.V.: Object tracking with an adaptive color-based particle Filter (2002),http://www.koller-meier.ch/esther/dagm2002.pdf

  30. 30. Bouguet, J. Y.: Pyramidal implementation of the Lucas Kanade feature tracker: Description of the algorithm. Intel Corporation Microprocessor Research Labs (2002),http://robots.stanford.edu/cs223b04/algo_tracking.pdf

  31. Blake, A., Isard, M.: The Condensation algorithm - conditional density propagation and applications to visual tracking. In: Advances in Neural Information Processing Systems (NIPS 1996), December 2-5, pp. 36–41. The MIT Press, Denver (1996)

    Google Scholar 

  32. Zhao, S., Zhao, J., Wang, Y., Fu, X.: Moving object detecting using gradient information, three-frame-differencing and connectivity testing. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 510–518. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Rudakova, V.: Probabilistic framework for multi-target tracking using multi-camera: applied to fall detection. Master thesis, Gjøvik University College (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Gjøvik University College, Norway

    Victoria Rudakova, Sajib Kumar Saha & Faouzi Alaya Cheikh

Authors
  1. Victoria Rudakova

    You can also search for this author inPubMed Google Scholar

  2. Sajib Kumar Saha

    You can also search for this author inPubMed Google Scholar

  3. Faouzi Alaya Cheikh

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. LE2I, UMR, CNRS 5158, Faculté des Sciences Mirande, 9 , avenue Alain Savary, BP 47870, 21078, DIJON, France

    Hocine Cherifi

  2. Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia

    Jasni Mohamad Zain

  3. Information Systems Department, King Saud University, 11543, Riyadh, Saudi Arabia

    Eyas El-Qawasmeh

Rights and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rudakova, V., Saha, S.K., Alaya Cheikh, F. (2011). Multiple Collaborative Cameras for Multi-Target Tracking Using Color-Based Particle Filter and Contour Information. In: Cherifi, H., Zain, J.M., El-Qawasmeh, E. (eds) Digital Information and Communication Technology and Its Applications. DICTAP 2011. Communications in Computer and Information Science, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21984-9_27

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp