Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Evaluating Pattern Set Mining Strategies in a Constraint Programming Framework

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 6635))

Included in the following conference series:

Abstract

The pattern mining community has shifted its attention from local pattern mining to pattern set mining. The task of pattern set mining is concerned with finding a set of patterns that satisfies a set of constraints and often also scores best w.r.t. an optimisation criteria. Furthermore, while in local pattern mining the constraints are imposed at the level of individual patterns, in pattern set mining they are also concerned with the overall set of patterns. A wide variety of different pattern set mining techniques is available in literature. The key contribution of this paper is that it studies, compares and evaluates such search strategies for pattern set mining. The investigation employs concept-learning as a benchmark for pattern set mining and employs a constraint programming framework in which key components of pattern set mining are formulated and implemented. The study leads to novel insights into the strong and weak points of different pattern set mining strategies.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bringmann, B., Nijssen, S., Tatti, N., Vreeken, J., Zimmermann, A.: Mining sets of patterns. In: Tutorial at ECMLPKDD 2010 (2010)

    Google Scholar 

  2. Bringmann, B., Zimmermann, A.: Tree\(^{\mbox{2}}\) - decision trees for tree structured data. In: Jorge, A., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 46–58. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3, 261–283 (1989)

    Google Scholar 

  4. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: KDD, pp. 204–212. ACM, New York (2008)

    Google Scholar 

  5. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: SDM. SIAM, Philadelphia (2007)

    Google Scholar 

  6. Frank, A., Asuncion, A.: UCI machine learning repository (2010),http://archive.ics.uci.edu/ml

  7. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. CW Reports CW596, Department of Computer Science, K.U.Leuven (October 2010),https://lirias.kuleuven.be/handle/123456789/278655

  8. Kearns, M.J., Vazirani, U.V.: An introduction to computational learning theory. MIT Press, Cambridge (1994)

    Google Scholar 

  9. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Knobbe, A., Crémilleux, B., Fürnkranz, J., Scholz, M.: From local patterns to global models: The lego approach to data mining. In: Fürnkranz, J., Knobbe, A. (eds.) Proceedings of LeGo 2008, an ECMLPKDD 2008 Workshop (2008)

    Google Scholar 

  11. Knobbe, A.J., Ho, E.K.Y.: Pattern teams. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 577–584. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: KDD, pp. 80–86 (1998)

    Google Scholar 

  13. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a constraint programming approach. In: KDD, pp. 647–656. ACM, New York (2009)

    Chapter  Google Scholar 

  14. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)

    Google Scholar 

  15. Rückert, U., De Raedt, L.: An experimental evaluation of simplicity in rule learning. Artif. Intell. 172(1), 19–28 (2008)

    Article MATH  Google Scholar 

  16. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: Ghosh, J., Lambert, D., Skillicorn, D.B., Srivastava, J. (eds.) SDM, pp. 395–406. SIAM, Philadelphia (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001, Leuven, Belgium

    Tias Guns, Siegfried Nijssen & Luc De Raedt

Authors
  1. Tias Guns

    You can also search for this author inPubMed Google Scholar

  2. Siegfried Nijssen

    You can also search for this author inPubMed Google Scholar

  3. Luc De Raedt

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, 518055, Shenzhen, China

    Joshua Zhexue Huang

  2. Faculty of Engineering and Information Technology, Center for Quantum Computation and Intelligent Systems, Data Sciences and Knowledge Discovery Lab, University of Technology Sydney, 2007, Sydney, NSW, Australia

    Longbing Cao

  3. Department of Computer Science and Engineering, University of Minnesota, 55455, Minneapolis, MN, USA

    Jaideep Srivastava

Rights and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guns, T., Nijssen, S., De Raedt, L. (2011). Evaluating Pattern Set Mining Strategies in a Constraint Programming Framework. In: Huang, J.Z., Cao, L., Srivastava, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 6635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20847-8_32

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp