Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Fuzzy Inference System Using Gaussian Distribution Curves for Forest Fire Risk Estimation

  • Conference paper

Abstract

This paper describes the development of a fuzzy inference system under the MATLAB platform. The system uses three distinct Gaussian distribution fuzzy membership functions in order to estimate the partial and the overall risk indices due to wild fires in the southern part of Greece. The behavior of each curve has been investigated in order to determine which one fits better for the specific problem and for the specific areas. Regardless the characteristics of each function, the risky areas have been spotted from 1984 till 2007. The results have shown a reliable performance over time and they encourage its wider use in the near future.

Similar content being viewed by others

Keywords

References

  1. Ayanz, J.S.M., Barbosa, P.M., Schmuck, G., Liberta, G.: The European Forest Fire Information System (EFFIS), European Commission. JIR Institute for Environment and sustainability (2003),http://natural-hazards.jrc.it/documents/fires/2003-publications/EFFIS-earsel-paper.pdf

  2. Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Elsevier Inc., USA (2005)

    MATH  Google Scholar 

  3. Duprey, B., Taheri, S.: A Fuzzy Based Stability Index Using a Right Sigmoid Membership Function SAE. International Journal of Commercial Vehicles 2(2) (March 2010)

    Google Scholar 

  4. Deeming, J., Burgan, R., Cohen, J.: The National Fire Danger Rating System USDA (1978)

    Google Scholar 

  5. Iliadis, L., Spartalis, S., Tachos, S.: Application of fuzzy T-norms towards Artificial Neural Networks evaluation: A case from wood industry. Journal Information Sciences, Informatics and Computer Science Intelligent Systems Applications 178(20), 3828–3839 (2008)

    Google Scholar 

  6. Iliadis, L.: A decision support system applying an integrated Fuzzy model for long - term forest fire risk estimation. Environmental Modeling and Software 20(5), 613–621 (2005)

    Article MathSciNet  Google Scholar 

  7. Iliadis, L.: Intelligent Information Systems in Risk Estimation Stamoulis Editors (2007) (Greek)

    Google Scholar 

  8. Iliadis, L., Papastavrou, A., Lefakis, P.: A computer-system that classifies the prefectures of Greece in forest fire risk zones using fuzzy sets. Journal Forest policy and Economics 4(1), 43–54 (2002)

    Article  Google Scholar 

  9. Kailidis, D.: Forest fires, 3rd edn., Giahoudi-Giapouli editions. Thessaloniki, Greece, 510 p. (1990) (in Greek)

    Google Scholar 

  10. Kailidis, D., Xanthopoulos, G.: The forest fire problem in Greece. Aristotelian University of Thessaloniki, Greece, Department of Forestry and Natural Environment, Forest Protection Laboratory. No. 310 (1991)

    Google Scholar 

  11. Kecman, V.: Learning and Soft Computing. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  12. Kuncheva, L.I., Rodriguez, J.J.: An experimental study on Rotation Forest ensembles. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 459–468. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Lin, C.: The Development, Systems, and Evaluation of Forest Fire Danger Rating: A Review. Taiwan Forestry Research Institute (2002),http://fire.tfri.gov.tw/DocRefl4.pdf

  14. Markalas, S., Pantelis, D.: Forest fires in Greece in 1993 Aristotelian Univ. of Thessaloniki, Department of Forestry and the Natural Environment, Forest Protection Laboratory. No. 3, 40 p. (1996) (in Greek)

    Google Scholar 

  15. Pieczynski, A., Obuchowicz, A.: Application of the General Gaussian Membership Function for the Fuzzy Model Parameters Tunning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 350–355. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Xanthopoulos, G.: Greek forest fires and property damage: A brief history. In: Proceedings - Symposium and Workshop on Protecting People and Homes from Wildfire in the Interior West, October 6-8, Missoula, Montana, USA. USDA For. Serv. Gen. Tech. Rep. INT-251, pp. 199-200, 213 (1988)

    Google Scholar 

  17. Xanthopoulos, G.: Forest fires in Greece: Past, present and future. Epikentra (Foundation for Political Research and Advanced Education) 6, 62–71 (1998) (in Greek); Special issue titled “Greek forests: myths and reality - Proposals for the present and for the future

    Google Scholar 

  18. Zadeh, L.A.: Inform Control, vol. 12, pp. 94–102 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Democritus University of Thrace, Pandazidou 193 str., Orestiada, Greece

    Lazaros Iliadis & Stergios Skopianos

  2. Department of Informatics, Aristotle University of Thessaloniki,  

    Stavros Tachos

  3. Democritus University of Thrace, Xanthi, Greece

    Stefanos Spartalis

Authors
  1. Lazaros Iliadis

    You can also search for this author inPubMed Google Scholar

  2. Stergios Skopianos

    You can also search for this author inPubMed Google Scholar

  3. Stavros Tachos

    You can also search for this author inPubMed Google Scholar

  4. Stefanos Spartalis

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Computer Science and Engineering Department, Frederick University, 1013, Nicosia, Cyprus

    Harris Papadopoulos

  2. Department of Electrical Engineering and Information Technology, Cyprus University of Technology, 3603, Limassol, Cyprus

    Andreas S. Andreou

  3. School of Computing, University of Portsmouth, PO1 2UP, Portsmouth, UK

    Max Bramer

Rights and permissions

Copyright information

© 2010 IFIP

About this paper

Cite this paper

Iliadis, L., Skopianos, S., Tachos, S., Spartalis, S. (2010). A Fuzzy Inference System Using Gaussian Distribution Curves for Forest Fire Risk Estimation. In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2010. IFIP Advances in Information and Communication Technology, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16239-8_49

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp