Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Learning Terminologies in Probabilistic Description Logics

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 6404))

Included in the following conference series:

Abstract

This paper investigates learning methods where the target language is the recently proposed probabilistic description logiccr\(\mathcal{ALC}\). We start with an inductive logic programming algorithm that learns logical constructs; we then develop an algorithm that learns probabilistic constructs by searching for conditioning concepts, using examples given as interpretations. Issues on learning from entailments are also examined, and practical examples are discussed.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antoniou, G., van Harmelen, F.: Semantic Web Primer. MIT Press, Cambridge (2008)

    Google Scholar 

  2. Baader, F., Nutt, W.: Basic description logics. In: Description Logic Handbook, pp. 47–100. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Cozman, F.G., Polastro, R.B.: Loopy propagation in a probabilistic description logic. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 120–133. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Cozman, F.G., Polastro, R.B.: Complexity analysis and variational inference for interpretation-based probabilistic description logics. In: Conference on Uncertainty in Artificial Intelligence (2009)

    Google Scholar 

  5. De Raedt, L. (ed.): Advances in Inductive Logic Programming. IOS Press, Amsterdam (1996)

    MATH  Google Scholar 

  6. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1), 187–201 (1997)

    Article MATH  Google Scholar 

  7. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.): Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal Royal Statistical Society B 44, 1–38 (1977)

    MATH  Google Scholar 

  9. Fanizzi, N., D’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Heinsohn, J.: Probabilistic description logics. In: International Conf. on Uncertainty in Artificial Intelligence, pp. 311–318 (1994)

    Google Scholar 

  11. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Principals of Knowledge Representation (KR), pp. 461–472 (1994)

    Google Scholar 

  12. Jaeger, M.: Relational bayesian networks: a survey. Linkoping Electronic Articles in Computer and Information Science 6 (2002)

    Google Scholar 

  13. Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Ochoa-Luna, J.E., Cozman, F.G.: An algorithm for learning with probabilistic description logics. In: 5th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW) at the 8th International Semantic Web Conference (ISWC), Chantilly, USA, pp. 63–74 (2009)

    Google Scholar 

  15. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)

    Google Scholar 

  16. Sebastiani, F.: A probabilistic terminological logic for modelling information retrieval. In: ACM Conf. on Research and Development in Information Retrieval (SIGIR), pp. 122–130 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Informática Aplicada, Unirio, Av. Pasteur, 458, Rio de Janeiro, RJ, Brazil

    Kate Revoredo

  2. Escola Politécnica, Universidade de São Paulo, Av. Prof. Mello Morais 2231, São Paulo, SP, Brazil

    José Eduardo Ochoa-Luna & Fabio Gagliardi Cozman

Authors
  1. Kate Revoredo

    You can also search for this author inPubMed Google Scholar

  2. José Eduardo Ochoa-Luna

    You can also search for this author inPubMed Google Scholar

  3. Fabio Gagliardi Cozman

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. FURG, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8 – Campus Carreiros, 96.201-900, Rio Grande, RS, Brazil

    Antônio Carlos da Rocha Costa

  2. UFRGS, Instituto de Informática, Universidade Federal do Rio Grande do Sul, Av. Bento Conçalves 9.500, 91501-970, Porto Alegre, RS, Brazil

    Rosa Maria Vicari

  3. Departamento de Ciência da Computação, Centro Universitário da FEI, Av. Humberto A. C. Branco 3972, 09850-901, São Bernardo do Campo, SP, Brazil

    Flavio Tonidandel

Rights and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Revoredo, K., Ochoa-Luna, J.E., Cozman, F.G. (2010). Learning Terminologies in Probabilistic Description Logics. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds) Advances in Artificial Intelligence – SBIA 2010. SBIA 2010. Lecture Notes in Computer Science(), vol 6404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16138-4_5

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp