Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

On the Use of the Negation Map in the Pollard Rho Method

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 6197))

Included in the following conference series:

  • 1544Accesses

Abstract

The negation map can be used to speed up the Pollard rho method to compute discrete logarithms in groups of elliptic curves over finite fields. It is well known that the random walks used by Pollard rho when combined with the negation map get trapped in fruitless cycles. We show that previously published approaches to deal with this problem are plagued by recurring cycles, and we propose effective alternative countermeasures. As a result, fruitless cycles can be resolved, but the best speedup we managed to achieve is by a factor of only 1.29. Although this is less than the speedup factor of\(\sqrt 2\) generally reported in the literature, it is supported by practical evidence.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC (2006)

    Google Scholar 

  2. Bailey, D.V., et al.: Breaking ECC2K-130. In: Cryptology ePrint Archive, Report 2009/541 (2009),http://eprint.iacr.org/

  3. Bos, J.W., Kaihara, M.E., Montgomery, P.L.: Pollard rho on the PlayStation 3. In: Workshop record of SHARCS 2009, pp. 35–50 (2009),http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf

  4. Brent, R.P., Pollard, J.M.: Factorization of the eighth Fermat number. Math. Comp. 36(154), 627–630 (1981)

    MATH MathSciNet  Google Scholar 

  5. Certicom. Certicom ECC Challenge (1997),http://www.certicom.com/images/pdfs/cert_ecc_challenge.pdf

  6. Certicom. Press release: Certicom announces elliptic curve cryptosystem (ECC) challenge winner (2002),http://www.certicom.com/index.php/2002-press-releases/38-2002-press-releases/340-notre-dame-mathematician-solves-eccp-109-encryption-key-problem-issued-in-1997

  7. Duursma, I.M., Gaudry, P., Morain, F.: Speeding up the discrete log computation on curves with automorphisms. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 103–121. Springer, Heidelberg (1999)

    Google Scholar 

  8. Escott, A.E., Sager, J.C., Selkirk, A.P.L., Tsapakidis, D.: Attacking elliptic curve cryptosystems using the parallel Pollard rho method. CryptoBytes Technical Newsletter 4(2), 15–19 (1999),ftp.rsasecurity.com/pub/cryptobytes/crypto4n2.pdf

    Google Scholar 

  9. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Improving the parallelized Pollard lambda search on anomalous binary curves. Math. Comp. 69(232), 1699–1705 (2000)

    Article MATH MathSciNet  Google Scholar 

  10. Harley, R.: Elliptic curve discrete logarithms project,http://pauillac.inria.fr/~harley/

  11. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)

    MATH MathSciNet  Google Scholar 

  12. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

    Google Scholar 

  13. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  14. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comp. 48, 243–264 (1987)

    MATH MathSciNet  Google Scholar 

  15. Pollard, J.M.: Monte Carlo methods for index computation (modp). Math. Comp. 32, 918–924 (1978)

    MATH MathSciNet  Google Scholar 

  16. Teske, E.: On random walks for Pollard’s rho method. Math. Comp. 70(234), 809–825 (2001)

    Article MATH MathSciNet  Google Scholar 

  17. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. Journal of Cryptology 12(1), 1–28 (1999)

    Article MATH MathSciNet  Google Scholar 

  18. Wiener, M.J., Zuccherato, R.J.: Faster attacks on elliptic curve cryptosystems. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory for Cryptologic Algorithms, EPFL, Station 14, CH-1015, Lausanne, Switzerland

    Joppe W. Bos, Thorsten Kleinjung & Arjen K. Lenstra

Authors
  1. Joppe W. Bos

    You can also search for this author inPubMed Google Scholar

  2. Thorsten Kleinjung

    You can also search for this author inPubMed Google Scholar

  3. Arjen K. Lenstra

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. LIP/ENS-Lyon, 46, allée d’Italie, 69364, Lyon, Cedex 07, France

    Guillaume Hanrot

  2. Laboratoire d’Informatique (CNRS/UMR 7650), École polytechnique, 91128, Palaiseau Cedex, France

    François Morain

  3. INRIA Nancy, project CARAMEL, 615 rue du jardin botanique, 54602, Villers-lès-Nancy Cedex,, France

    Emmanuel Thomé

Rights and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bos, J.W., Kleinjung, T., Lenstra, A.K. (2010). On the Use of the Negation Map in the Pollard Rho Method. In: Hanrot, G., Morain, F., Thomé, E. (eds) Algorithmic Number Theory. ANTS 2010. Lecture Notes in Computer Science, vol 6197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14518-6_9

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp