Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 6056))
Included in the following conference series:
2372Accesses
Abstract
The Pollard kangaroo method solves the discrete logarithm problem (DLP) in an interval of sizeN with heuristic average case expected running time approximately\(2 \sqrt{N}\) group operations. It is well-known that the Pollard rho method can be sped-up by using equivalence classes (such as orbits of points under an efficiently computed group homomorphism), but such ideas have not been used for the DLP in an interval. Indeed, it seems impossible to implement the standard kangaroo method with equivalence classes.
The main result of the paper is to give an algorithm, building on work of Gaudry and Schost, to solve the DLP in an interval of sizeN with heuristic average case expected running time of close to\(1.36\sqrt{N}\) group operations for groups with fast inversion. In practice the algorithm is not quite this fast, due to the usual problems with pseudorandom walks such as fruitless cycles. In addition, we present experimental results.
Chapter PDF
Similar content being viewed by others
Keywords
References
Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)
Bos, J.W., Kleinjung, T., Lenstra, A.K.: On the use of the negation map in the Pollard Rho method. (preprint, 2010)
Cheon, J.H.: Security Analysis of the Strong Diffie-Hellman Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)
Cofman, E.G., Flajolet, P., Flatto, L., Hofri, M.: The Maximum of a Random Walk and its Application to Rectangle Packing. Technical report, INRIA (1997)
Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. In: Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2005)
Duursma, I.M., Gaudry, P., Morain, F.: Speeding up the discrete log computation on curves with automorphisms. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 103–121. Springer, Heidelberg (1999)
Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009)
Galbraith, S.D., Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm for multidimensional discrete logarithm problems. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 368–382. Springer, Heidelberg (2009)
Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Improving kangaroo and Gaudry-Schost methods for solving the DLP in an interval (in preparation) (2010)
Galbraith, S.D., Holmes, M.: A non-uniform birthday problem with applications to discrete logarithms (in preparation) (2010)
Gallant, R., Lambert, R., Vanstone, S.: Improving the Parallelized Pollard Lambda Search on Binary Anomalous Curves. Mathematics of Computation 69, 1699–1705 (2000)
Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)
Gaudry, P., Harley, R.: Counting Points on Hyperelliptic Curves over Finite Fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 313–332. Springer, Heidelberg (2000)
Gaudry, P., Schost, E.: A low-memory parallel version of Matsuo, Chao and Tsujii’s algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222. Springer, Heidelberg (2004)
Gennaro, R.: An Improved Pseudo-random Generator Based on Discrete Log. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 469–481. Springer, Heidelberg (2000)
Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving Discrete Logarithms from Partial Knowledge of the Key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 224–237. Springer, Heidelberg (2007)
Jao, D., Yoshida, K.: Boneh-Boyen signatures and the Strong Diffie-Hellman problem. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 1–16. Springer, Heidelberg (2009)
Lim, C.H., Lee, P.J.: A Key Recovery Attack on Discrete Log-based Schemes Using a Prime Order Subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 249–263. Springer, Heidelberg (1997)
Montenegro, R., Tetali, P.: How long does it take to catch a wild kangaroo? In: 41st ACM Symposium on Theory of Computing (2009)
Nishimura, K., Sibuya, M.: Probability to meet in the middle. Journal of Cryptology 2, 13–22 (1990)
van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman Key Agreement with Short Exponents. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–343. Springer, Heidelberg (1996)
van Oorschot, P.C., Wiener, M.J.: Parallel collision Search with Cryptanalytic Applications. Journal of Cryptology 12, 1–28 (1999)
Patel, S., Sundaram, G.: An Efficient Discrete Log Pseudo Random Generator. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer, Heidelberg (1998)
Pollard, J.M.: Monte Carlo Methods for Index Computation modp. Mathematics of Computation 32(143), 918–924 (1978)
Pollard, J.M.: Three kangaroos are better than two! Private Communication (2009)
Pollard, J.M.: Kangaroos, Monopoly and Discrete Logarithms. Journal of Cryptology 13, 437–447 (2000)
Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm for multidimensional discrete logarithm problems and applications. PhD Thesis, Royal Holloway, University of London (2010)
Selivanov, B.I.: On waiting time in the scheme of random allocation of coloured particles. Discrete Math. Appl. 5(1), 73–82 (1995)
Wiener, M.J., Zuccerato, R.J.: Faster Attacks on Elliptic Curve Cryptosystems. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Mathematics Department, Auckland University, Auckland, New Zealand
Steven D. Galbraith
Mathematics Department, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
Raminder S. Ruprai
- Steven D. Galbraith
You can also search for this author inPubMed Google Scholar
- Raminder S. Ruprai
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Département d’Informatique, École Normale Supérieure, 45 rue d’Ulm, 75230, Paris Cedex 05, France
Phong Q. Nguyen & David Pointcheval &
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Galbraith, S.D., Ruprai, R.S. (2010). Using Equivalence Classes to Accelerate Solving the Discrete Logarithm Problem in a Short Interval. In: Nguyen, P.Q., Pointcheval, D. (eds) Public Key Cryptography – PKC 2010. PKC 2010. Lecture Notes in Computer Science, vol 6056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13013-7_22
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-13012-0
Online ISBN:978-3-642-13013-7
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative