Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 5978))
Included in the following conference series:
1942Accesses
Abstract
Ever since the invention of Zero-Knowledge by Goldwasser, Micali, and Rackoff [1], Zero-Knowledge has become a central building block in cryptography - with numerous applications, ranging from electronic cash to digital signatures. The properties of Zero-Knowledge range from the most simple (and not particularly useful in practice) requirements, such as honest-verifier zero-knowledge to the most demanding (and most useful in applications) such as non-malleable and concurrent zero-knowledge. In this paper, we study the complexity ofefficient zero-knowledge reductions, from the first type to the second type. More precisely, under a standard complexity assumption (ddh), on input a public-coin honest-verifier statistical zero knowledge argument of knowledgeπ′ for a languageL we show a compiler that produces an argument systemπ forL that is concurrent non-malleable zero-knowledge (under non-adaptive inputs – which is the best one can hope to achieve [2,3]). Ifκ is the security parameter, the overhead of our compiler is as follows:
The round complexity ofπ is\(r+\tilde{O}(\log\kappa)\) rounds, wherer is the round complexity ofπ′.
The new prover\(\mathcal{P}\) (resp., the new verifier\(\mathcal{V}\)) incurs an additional overhead of (at most)\(r+{\kappa\cdot\tilde{O}(\log^2\kappa)}\) modular exponentiations. If tags of length\(\tilde{O}(\log\kappa)\) are provided, the overhead is only\(r+{\tilde{O}(\log^2\kappa)}\) modular exponentiations.
The only previous concurrent non-malleable zero-knowledge (under non-adaptive inputs) was achieved by Barak, Prabhakaran and Sahai [4]. Their construction, however, mainly focuses on afeasibility result rather than efficiency, and requires expensive\({\mathcal{NP}}\)-reductions.
The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI:10.1007/978-3-642-11799-2_36
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proc. 17th STOC, pp. 291–304 (1985)
Lindell, Y.: General composition and universal composability in secure multi-party computation. In: Proc. 44th FOCS, pp. 394–403 (2003)
Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)
Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. In: FOCS 2006 (2006); Full version on Cryptology ePrint Archive report,http://eprint.iacr.org/
Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2000); (electronic) Preliminary version in STOC 1991 (1991)
Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols using signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 177–194. Springer, Heidelberg (2003)
MacKenzie, P., Yang, K.: On Simulation-Sound Trapdoor Commitments. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400. Springer, Heidelberg (2004)
Gennaro, R.: Multi-trapdoor Commitments and Their Applications to Proof s of Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004)
Damgård, I., Nielsen, J.B., Orlandi, C.: On the necessary and sufficient assumptions for uc computation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978. Springer, Heidelberg (2010)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)
Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge. In: Proc. 32th STOC, pp. 235–244 (2000)
Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159. Springer, Heidelberg (2003)
Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)
Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: Proc. 37th STOC (2005)
De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)
Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006)
Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer, Heidelberg (2007)
Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)
Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008)
Chase, M., Lysyanskaya, A.: Simulatable vrfs with applications to multi-theorem nizk. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322. Springer, Heidelberg (2007)
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)
Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)
Schnorr, C.P.: Efficient identification and signatures for smart cards (abstract). In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 688–689. Springer, Heidelberg (1990)
Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–432. Springer, Heidelberg (1999)
Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS, pp. 366–375 (2002)
Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-round resettable zero knowledge with concurrent soundness in the bare public-key model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004)
Di Crescenzo, G., Visconti, I.: Concurrent zero knowledge in the public-key model. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 816–827. Springer, Heidelberg (2005)
Visconti, I.: Efficient zero knowledge on the internet. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 22–33. Springer, Heidelberg (2006)
Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent nmwi and its relation to nmzk. Technical Report ECCC Report TR06-095, ECCC (2006)
Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable zero knowledge in the bare public-key model. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 548–559. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
University of California, Los Angeles, USA
Rafail Ostrovsky & Omkant Pandey
University of Salerno, Italy
Ivan Visconti
- Rafail Ostrovsky
You can also search for this author inPubMed Google Scholar
- Omkant Pandey
You can also search for this author inPubMed Google Scholar
- Ivan Visconti
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Computer Science & Engineering Department, University of California,, 9500 Gilman Drive, La Jolla, 92093-5004, San Diego, CA, USA
Daniele Micciancio
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ostrovsky, R., Pandey, O., Visconti, I. (2010). Efficiency Preserving Transformations for Concurrent Non-malleable Zero Knowledge. In: Micciancio, D. (eds) Theory of Cryptography. TCC 2010. Lecture Notes in Computer Science, vol 5978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11799-2_32
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-11798-5
Online ISBN:978-3-642-11799-2
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative