Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Novel 3D Segmentation of Vertebral Bones from Volumetric CT Images Using Graph Cuts

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 5876))

Included in the following conference series:

Abstract

Bone mineral density (BMD) measurements and fracture analysis of the spine bones are restricted to the Vertebral bodies (VBs). In this paper, we present a novel and fast 3D segmentation framework ofVBs in clinical CT images using the graph cuts method. The Matched filter is employed to detect theVB region automatically. In the graph cuts method, aVB (object) and surrounding organs (background) are represented using a gray level distribution models which are approximated by a linear combination of Gaussians (LCG) to better specify region borders between two classes (object and background). Initial segmentation based on the LCG models is then iteratively refined by using MGRF with analytically estimated potentials. In this step, the graph cuts is used as a global optimization algorithm to find the segmented data that minimize a certain energy function, which integrates the LCG model and the MGRF model. Validity was analyzed using ground truths of data sets (expert segmentation) and the European Spine Phantom (ESP) as a known reference. Experiments on the data sets show that the proposed segmentation approach is more accurate than other known alternatives.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kang, Y., Engelke, K., Kalender, W.A.: New accurate and precise 3D segmentation method for skeletal structures in volumetric CT data. IEEE Transaction on Medical Imaging (TMI) 22(5), 586–598 (2003)

    Article  Google Scholar 

  2. Kalender, W.A., Felsenberg, D., Genant, H., Fischer, M., Dequeker, J., Reeve, J.: The European Spine Phantom - a tool for standardization and quality control in spinal bone measurements by DXA and QCT. European J. Radiology 20, 83–92 (1995)

    Article  Google Scholar 

  3. Mastmeyer, A., Engelke, K., Fuchs, C., Kalender, W.A.: A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Medical Image Analysis 10(4), 560–577 (2006)

    Article  Google Scholar 

  4. http://www.back.com

  5. Kaminsky, J., Klinge, P., Bokemeyer, M., Luedemann, W.: M Samii, Specially adapted interactive tools for an improved 3D-segmentation of the spine. Computerized Medical Imaging and Graphics 28(3), 119–127 (2004)

    Article  Google Scholar 

  6. Tan, S., Yao, J., Ward, M.M., Yao, L., Summers, R.M.: Computer aided evaluation of Ankylosing Spondylitis. In: IEEE International Symposium on Biomedical Imaging (ISBI 2006), pp. 339–342 (2006)

    Google Scholar 

  7. Tan, S., Yao, J., Ward, M.M., Yao, L., Summers, R.M.: Computer Aided Evaluation of Ankylosing Spondylitis Using High-Resolution CT. IEEE Transaction on Medical Imaging (TMI) 27(9), 1252–1267 (2008)

    Article  Google Scholar 

  8. Ibanez, L., Schroeder, W., Cates, J.: The ITK software guide Kitware Inc (2003)

    Google Scholar 

  9. Sebastiana, T.B., Teka, H., Criscob, J.J., Kimia, B.B.: Segmentation of carpal bones from CT images using skeletally coupled deformable models. Medical Image Analysis 7(1), 21–45 (2003)

    Article  Google Scholar 

  10. Perelman, L.C., Paradis, J., Barrett, E., Zoroofi, R.A., Sato, Y., Sasama, T., Nishii, T., Sugano, N., Yonenobu, K., Yoshikawa, H., Ochi, T., Tamura, S.: Automated segmentation of acetabulum and femoral head from 3-D CT images. IEEE Trans Inf Technol Biomed. 7(4), 329–343 (2003)

    Article  Google Scholar 

  11. Ali, A.M., Farag, A.A.: Automatic Lung Segmentation of Volumetric Low-Dose CT Scans Using Graph Cuts. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 258–267. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Kumar, B.V.K.V., Savvides, M., Xie, C.: Correlation pattern recognition for face recognition. Proceedings of the IEEE 94(11), 1963–1976 (2006)

    Article  Google Scholar 

  13. Farag, A.A., El-Baz, A., Gimelfarb, G.: Density estimation using modified expectation maximization for a linear combination of gaussians. In: Proc. of International Conference on Image Processing (ICIP 2004), vol. 3, pp. 1871–1874 (2004)

    Google Scholar 

  14. Aslan, M.S., Ali, A.M., Arnold, B., Fahmi, R., Farag, A.A., Xiang, P.: Segmentation of trabecular bones from vertebral bodies in volumetric CT spine images. In: ICIP 2009 (Accepted to appear, 2009)

    Google Scholar 

  15. Boykol, Y., Kolmogorov, V.: An experiment comparison of min-cut/max-flowalgorithms for energy minimization in vision. IEEE Transaction on Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Computer Vision and Image Processing Laboratory (CVIP Lab), University of Louisville, Louisville, KY, 40292

    Melih S. Aslan, Asem Ali, Ham Rara, Aly A. Farag & Rachid Fahmi

  2. Image Analysis, Inc, 1380 Burkesville St, Columbia, KY, 42728, USA

    Ben Arnold & Ping Xiang

Authors
  1. Melih S. Aslan

    You can also search for this author inPubMed Google Scholar

  2. Asem Ali

    You can also search for this author inPubMed Google Scholar

  3. Ham Rara

    You can also search for this author inPubMed Google Scholar

  4. Ben Arnold

    You can also search for this author inPubMed Google Scholar

  5. Aly A. Farag

    You can also search for this author inPubMed Google Scholar

  6. Rachid Fahmi

    You can also search for this author inPubMed Google Scholar

  7. Ping Xiang

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science and Engineering, University of Nevada, Reno, USA

    George Bebis

  2. NASA Ames Research Center, Moffett Field, CA, USA

    Richard Boyle

  3. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Bahram Parvin

  4. Desert Research Institute, Reno, NV, USA

    Darko Koracin

  5. Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, 338-8570, 338-8570, Japan

    Yoshinori Kuno

  6. Microsoft Research, Redmond, WA, USA

    Junxian Wang

  7. Univ. of Zurich, Department of Informatics, Winterthurerstr. 190, P.O. Box, 8057, Zurich, Switzerland

    Renato Pajarola

  8. Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA

    Peter Lindstrom

  9. University of Applied Sciences Bonn-Rhein-Sieg, 53754, Sankt Augustin, Germany

    André Hinkenjann

  10.  ,  

    Miguel L. Encarnação

  11. SCI Institute & School of Computing, University of Utah, 84112, Salt Lake City, UT, USA

    Cláudio T. Silva

  12. Desert Research Institute, 89512, Reno, NV, USA

    Daniel Coming

Rights and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aslan, M.S.et al. (2009). A Novel 3D Segmentation of Vertebral Bones from Volumetric CT Images Using Graph Cuts. In: Bebis, G.,et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_49

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp