Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 5912))

Abstract

We demonstrate how the framework that is used for creating efficient number-theoretic ID and signature schemes can be transferred into the setting of lattices. This results in constructions of the most efficient to-date identification and signature schemes with security based on the worst-case hardness of problems in ideal lattices. In particular, our ID scheme has communication complexity of around 65,000 bits and the length of the signatures produced by our signature scheme is about 50,000 bits. All prior lattice-based identification schemes required on the order of millions of bits to be transferred, while all previous lattice-based signature schemes were either stateful, too inefficient, or produced signatures whose lengths were also on the order of millions of bits. The security of our identification scheme is based on the hardness of finding the approximate shortest vector to within a factor of\(\tilde{O}(n^2)\) in the standard model, while the security of the signature scheme is based on the same assumption in the random oracle model. Our protocols are very efficient, with all operations requiring\(\tilde{O}(n)\) time.

We also show that the technique for constructing our lattice-based schemes can be used to improve certain number-theoretic schemes. In particular, we are able to shorten the length of the signatures that are produced by Girault’s factoring-based digital signature scheme ([10][11][31]).

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems. In: STOC (1996)

    Google Scholar 

  3. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC (1997); An improved version is described in ECCC 2007

    Google Scholar 

  4. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: STOC, pp. 601–610 (2001)

    Google Scholar 

  5. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptology 1(2), 77–94 (1988)

    Article MATH MathSciNet  Google Scholar 

  6. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC, pp. 416–426 (1990)

    Google Scholar 

  7. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  8. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices, and new cryptographic constructions. In: STOC (2008)

    Google Scholar 

  10. Girault, M.: An identity-based identification scheme based on discrete logarithms modulo a composite number. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 481–486. Springer, Heidelberg (1991)

    Google Scholar 

  11. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature schemes based on groups of unknown order. J. Cryptology 19(4), 463–487 (2006)

    Article MATH MathSciNet  Google Scholar 

  12. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article MATH MathSciNet  Google Scholar 

  13. Guillou, L., Quisquater, J.J.: A ”paradoxical” identity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, Heidelberg (1990)

    Google Scholar 

  14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Lenstra, A.K., Lenstra Jr., H.W., Lovasz, L.: Factoring polynomials with rational coefficients. Mathematische Annalen (261), 513–534 (1982)

    Google Scholar 

  17. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Public Key Cryptography, pp. 162–179 (2008)

    Google Scholar 

  18. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Merkle, R.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)

    Google Scholar 

  22. Merkle, R.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

    Google Scholar 

  23. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Computational Complexity 16(4), 365–411 (2007)

    Article MATH MathSciNet  Google Scholar 

  24. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. on Computing 37(1), 267–302 (2007)

    Article MATH MathSciNet  Google Scholar 

  25. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D., Buchmann, J. (eds.) Post-quantum Cryptography. Springer, Heidelberg (2009)

    Google Scholar 

  26. Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

    Google Scholar 

  27. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)

    Google Scholar 

  28. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC (2009)

    Google Scholar 

  29. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case connection factors. In: STOC (2007)

    Google Scholar 

  31. Pointcheval, D.: The composite discrete logarithm and secure authentication. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 113–128. Springer, Heidelberg (2000)

    Google Scholar 

  32. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)

    Article MATH  Google Scholar 

  33. Regev, O.: New lattice-based cryptographic constructions. J. ACM 51(6), 899–942 (2004)

    Article MATH MathSciNet  Google Scholar 

  34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC (2005)

    Google Scholar 

  35. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)

    Article MATH MathSciNet  Google Scholar 

  36. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article MATH MathSciNet  Google Scholar 

  37. Stehle, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public-key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, Tel-Aviv University, Tel Aviv, 69978, Israel

    Vadim Lyubashevsky

Authors
  1. Vadim Lyubashevsky

Editor information

Editors and Affiliations

  1. Information Technology R&D Center, Mitsubishi Electric Corporation, 247-8501, Kamakura, Kanagawa, Japan

    Mitsuru Matsui

Rights and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lyubashevsky, V. (2009). Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In: Matsui, M. (eds) Advances in Cryptology – ASIACRYPT 2009. ASIACRYPT 2009. Lecture Notes in Computer Science, vol 5912. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10366-7_35

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp