Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Estimation of Distribution Algorithms for the Machine-Part Cell Formation

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 5821))

  • 1420Accesses

Abstract

The machine-part cell formation is a NP- complete combinational optimization in cellular manufacturing system. Previous researches have revealed that although the genetic algorithm (GA) can get high quality solutions, special selection strategy, crossover and mutation operators as well as the parameters must be defined previously to solve the problem efficiently and flexibly. The Estimation of Distribution Algorithms (EDAs) has recently been recognized as a new computing paradigm in evolutionary computation which can overcome some drawbacks of the traditional GA mentioned above. In this paper, two kinds of the EDAs, UMDA and EBNABIC are applied to solve the machine-part cell formation problem. Simulation results on six well known problems show that the UMDA and EBNABIC can attain satisfied solutions more simply and efficiently.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saeed, Z., Ming, L.: A new genetic algorithm for the machine/part grouping problem involving processing times and lot sizes. Computers & Industrial Engineering 45, 713–731 (2003)

    Article  Google Scholar 

  2. Joines, J.A., Culbreth, C.T., King, R.E.: Manufacturing cell design: an integer programming model employing genetic algorithms. IIE Transactions 28, 69–85 (1996)

    Article  Google Scholar 

  3. Cheng, C.H., Gupta, Y.P., Lee, W.H., Wong, K.F.: A TSP-based heuristic for forming machine groups and part families. International Journal of Production Research 36, 1325–1337 (1998)

    Article MATH  Google Scholar 

  4. Onwubolu, G.C., Mutingi, M.: A genetic algorithm approach to cellular manufacturing systems. Computers & Industrial Engineering 39, 125–144 (2001)

    Article MATH  Google Scholar 

  5. Brown, E.C., Sumichrast, R.T.: CF-GGA: a grouping genetic algorithm for the cell formation problem. International Journal of Production Research 39, 3651–3670 (2001)

    Article MATH  Google Scholar 

  6. Vila Goncalves Filho, E., JoséTiberti, A.: A group genetic algorithm for the machine cell formation problem. International Journal of Production Economics 102, 1–21 (2006)

    Article  Google Scholar 

  7. Tariq, A., Hussain, I., Ghafoor, A.: A hybrid genetic algorithm for machine-part grouping. Computers & Industrial Engineering 56, 347–356 (2008)

    Article  Google Scholar 

  8. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)

    Book MATH  Google Scholar 

  9. Mühlenbein, H., Paaß, G.: From Recombination of Genes to the Estimation of Distributions I. Binary Parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Pelikan, M., Goldberg, D.E., Lobo, F.: A Survey of Optimization by Building and Using Probabilistic Models. Computational Optimization and Applications 21, 5–20 (2002)

    Article MathSciNet MATH  Google Scholar 

  11. Chandrasekharan, M.P., Rajagopalan, R.: An ideal seed non-hierarchical clustering algorithm for group technology. International Journal of Production Research 11, 835–850 (1986)

    MATH  Google Scholar 

  12. Kumar, C.S., Chandrasekharan, M.P.: Grouping efficacy: a quantities criterion for goodness of block diagonal forms of binary matrices in group technology. International Journal of Production Research 28, 223–243 (1990)

    Article  Google Scholar 

  13. Armañanzas, R., Inza, I., Santana, R., et al.: A review of estimation of distribution algorithms in bioinformatics. BioData Mining 1, 1–6 (2008)

    Article  Google Scholar 

  14. Pelikan, M., Sastry, K., Cantú-Paz, E.: Scalable optimization via probabilistic modeling: From algorithms to applications. Springer, Heidelberg (2006)

    Book MATH  Google Scholar 

  15. Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In: Rodriguez, A.A.O., Ortiz, M.R.S., Hermida, R.S. (eds.) Second Symposium on Artificial Intelligence (CIMAF 1999) Habana, Cuba. Institute of Cybernetics, Mathematics, and Physics and Ministry of Science, Technology and Environment. pp. 332–339 (1999)

    Google Scholar 

  16. Jensen., F.V. (ed.): Introduction to Bayesian Networks. Springer, Secaucus (1996)

    Google Scholar 

  17. Henrion, M.: Propagation of uncertainty by probabilistic logic sampling in Bayes’ networks. Uncertainty in Artificial Intelligence 2, 149–164 (1988)

    Article  Google Scholar 

  18. Lima, C.F., Pelikan, M., Goldberg, D.E., et al.: Influence of selection and replacement strategies on linkage learning in BOA. In: IEEE Congress on Evolutionary Computation CEC 2007, Singapore, pp. 1083–1090 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Shijiazhuang Institute of Railway Technology, Shijiazhuang, 050041, China

    Qingbin Zhang, Lihong Bi & Boyuan Ma

  2. Hebei Academy of Sciences, Shijiazhuang, 050081, China

    Bo Liu

  3. Information Center of Hebei Education Department, Shijiazhuang, 050000, China

    Zhuangwei Wang

Authors
  1. Qingbin Zhang

    You can also search for this author inPubMed Google Scholar

  2. Bo Liu

    You can also search for this author inPubMed Google Scholar

  3. Lihong Bi

    You can also search for this author inPubMed Google Scholar

  4. Zhuangwei Wang

    You can also search for this author inPubMed Google Scholar

  5. Boyuan Ma

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Faculty of Computer Science, China University of Geosciences, 430074, Wuhan, Hubei, P.R. China

    Zhihua Cai

  2. School of Computer Science, China University of Geosciences, 430074, Wuhan, Hubei, China

    Zhenhua Li

  3. Computation Center, Wuhan University, 430072, Wuhan, Hubei, China

    Zhuo Kang

  4. School of Computer Science and Engineering, The University of Aizu, 965-8580, i, Aizu-Wakamatsu City, Fukushima, Japan

    Yong Liu

Rights and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Liu, B., Bi, L., Wang, Z., Ma, B. (2009). Estimation of Distribution Algorithms for the Machine-Part Cell Formation. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2009. Lecture Notes in Computer Science, vol 5821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04843-2_10

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp