Part of the book series:Studies in Computational Intelligence ((SCI,volume 243))
1732Accesses
Abstract
Aspects concerning the design of linear and fuzzy control systems based on the Iterative Feedback Tuning (IFT) approach are discussed. Two types of controller parametric conditions are derived to guarantee the robust stability of the control systems. The conditions are included in the steps of the IFT algorithms of linear control systems. Next an IFT-based design of a class of Takagi-Sugeno PI-fuzzy controllers (PI-FCs) is given. The design method maps the parameters of the linear PI controllers onto the parameters of the Takagi-Sugeno PI-FCs. The application of IFT in linear and fuzzy control systems is exemplified in a case study dealing with the angular position control of a DC servo system with backlash laboratory equipment. The performance enhancement ensured by IFT and fuzzy control is illustrated by real-time experimental results.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 34319
- Price includes VAT (Japan)
- Softcover Book
- JPY 42899
- Price includes VAT (Japan)
- Hardcover Book
- JPY 42899
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, B.D.O., Jury, E.I., Mansour, M.: On Robust Hurwitz Polynomials. IEEE Trans. Autom. Control 32, 909–913 (1987)
Angelov, P.P.: Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems. Springer, Heidelberg (2002)
Baranyi, P., Korondi, P., Tanaka, K.: Parallel-distributed Compensation-based Stabilization of a 3-DOF RC Helicopter: a Tensor Product Transformation-based Approach. J. Adv. Comput. Intell. Intell. Inform. 13, 25–34 (2009)
Blažič, S., Škrjanc, I.: Design and Stability Analysis of Fuzzy Model-based Predictive Control - a case study. J. Intell. Robot Syst. 49, 279–292 (2007)
Blažič, S., Škrjanc, I., Matko, D.: Globally Stable Direct Fuzzy Model Reference Adaptive Control. Fuzzy Sets Syst. 139, 3–33 (2003)
Campi, M.C., Lecchini, A., Savaresi, S.M.: Virtual Reference Feedback Tuning (VRFT): a New Direct Approach to the Design of Feedback Controllers. In: Proceedings of 39th Conference on Decision and Control, pp. 623–628 (2000)
Campi, M.C., Lecchini, A., Savaresi, S.M.: Direct Nonlinear Control Design: the Virtual Reference Feedback Tuning (VRFT) Approach. IEEE Trans. Autom. Control 51, 14–27 (2006)
Chang, Y.Z., Tsai, Z.R., Hwang, J.D., Lee, J.: Robust Fuzzy Control and Evolutionary Fuzzy Identification of Singularly Perturbed Nonlinear Systems with Parameter Uncertainty. Electr. Eng. 90, 379–393 (2008)
Du, H., Zhang, N.: Fuzzy Control for Nonlinear Uncertain Electrohydraulic Active Suspensions with Input Constraint. IEEE Trans. Fuzzy Syst. 17, 343–356 (2009)
Franklin, G.F., Powell, J.D., Workman, M.L.: Digital Control of Dynamic Systems. Addison-Wesley, Menlo Park (1998)
Gevers, M.: Iterative Feedback Tuning: Theory and Applications in Chemical Process Control. J. A. 38, 16–25 (1997)
Galichet, S., Foulloy, L.: Fuzzy Controllers: Synthesis and Equivalences. IEEE Trans. Fuzzy Syst. 3, 140–148 (1995)
Hildebrand, R., Lecchini, A., Solari, G., Gevers, M.: Prefiltering in Iterative Feedback Tuning: Optimization of the Prefilter for Accuracy. IEEE Trans. Autom. Control 49, 1801–1805 (2004)
Hildebrand, R., Lecchini, A., Solari, G., Gevers, M.: Optimal Prefiltering in Iterative Feedback Tuning. IEEE Trans. Autom. Control 509, 1196–1200 (2005)
Hjalmarsson, H.: Iterative Feedback Tuning - an overview. Int. J. Adapt Control Signal Process 16, 373–395 (2002)
Hjalmarsson, H., Gevers, M., Gunnarsson, S., et al.: Iterative Feedback Tuning: theory and applications. IEEE Control Syst. Mag 18, 26–41 (1998)
Hjalmarsson, H., Gunnarsson, S., Gevers, M.: A Convergent Iterative Restricted Complexity Control Design Scheme. In: Proceedings of 33rd IEEE Conference on Decision and Control, pp. 1735–1740 (1994)
Horváth, L., Rudas, I.J.: Modeling and Problem Solving Methods for Engineers. Academic Press, Elsevier, Burlington (2004)
Kacprzyk, J.: Multistage Fuzzy Control: A Model-based Approach to Control and Decision-Making. Wiley, Chichester (1997)
Karimi, A., Mišković, L., Bonvin, D.: Iterative Correlation-based Controller Tuning. Int. J. Adapt Control Signal Process 18, 645–664 (2004)
Kharitonov, V.L.: Asymptotic Stability of an Equilibrium Position of a Family of Systems of Linear Differential Equations. Differ. Equ. 14, 1483–1485 (1979)
Kovačić, Z., Bogdan, S.: Fuzzy Controller Design: Theory and Applications. CRC Press, Boca Raton (2006)
Johanyák, Z.C., Kovács, S.: Sparse Fuzzy System Generation by Rule Base Extension. In: Proceedings of 11th International Conference on Intelligent Engineering Systems, pp. 99–104 (2007)
Lam, H.K., Seneviratne, L.D.: Tracking Control of Sampled-Data Fuzzy-Model-based Control Systems. IET Control Theory Appl. 3, 56–67 (2009)
Lecchini, A., Campi, M.C., Savaresi, S.M.: Virtual Reference Feedback Tuning for Two Degree of Freedom Controllers. Int. J. Adapt Control Signal Process 16, 355–371 (2002)
Mansouri, B., Manamanni, N., Guelton, K., et al.: Output Feedback LMI Tracking Control Conditions with H ∞ Criterion for Uncertain and Disturbed T-S Models. Inf. Sci. 179, 446–457 (2009)
Precup, R.E., Preitl, S.: PI and PID Controllers Tuning for Integral-Type Servo Systems to Ensure Robust Stability and Controller Robustness. Electr. Eng. 88, 149–156 (2006)
Precup, R.E., Preitl, S., Rudas, I.J., et al.: Design and Experiments for a Class of Fuzzy Controlled Servo Systems. IEEE/ASME Trans Mechatron 13, 22–35 (2008)
Precup, R.E., Preitl, Z., Preitl, S.: Iterative Feedback Tuning Approach to Development of PI-Fuzzy Controllers. In: Proceedings of 2007 IEEE International Conference on Fuzzy Systems, pp. 199–204 (2007)
Sala, A.: Integrating Virtual Reference Feedback Tuning into a Unified Closed-Loop Identification Framework. Automatica 43, 178–183 (2007)
Sala, A., Guerra, T.M., Babuška, R.: Perspectives of Fuzzy Systems and Control. Fuzzy Sets Syst. 156, 432–444 (2005)
Valente de Oliveira, J., Gomide, F.A.C.: Formal Methods for Fuzzy Modeling and Control. Fuzzy Sets Syst. 121, 1–2 (2001)
Vaščák, J.: Navigation of Mobile Robots Using Potential Fields and Computational Intelligence Means. Acta Polytech. Hung. 4, 63–74 (2007)
Yao, L., Huang, P.Z.: Learning of Hybrid Fuzzy Controller for the Optical Data Storage Device. IEEE/ASME Trans. Mechatron. 13, 3–13 (2008)
Zhong, Q., Bao, J., Yu, Y., Liao, X.: Impulsive Control for T-S fuzzy Model-based Chaotic Systems. Math. Comput. Simul. 79, 409–415 (2008)
Author information
Authors and Affiliations
Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, Bd. V. Parvan 2, 300223, Timisoara, Romania
Radu-Emil Precup, Mircea-Bogdan Rădac, Stefan Preitl & Claudia-Adina Dragoş
School of Information Technology and Engineering, University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada, K1N 6N5
Emil M. Petriu
- Radu-Emil Precup
You can also search for this author inPubMed Google Scholar
- Mircea-Bogdan Rădac
You can also search for this author inPubMed Google Scholar
- Stefan Preitl
You can also search for this author inPubMed Google Scholar
- Emil M. Petriu
You can also search for this author inPubMed Google Scholar
- Claudia-Adina Dragoş
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
John von Neumann Fac. Informatics, Dept. Intelligent Engineering Systems, Budapest Tech., 1034, Budapest, Hungary
Imre J. Rudas & János Fodor &
Systems Research Instiute, PAN Warszawa, Newelska 6, 01-447, Warszawa, Poland
Janusz Kacprzyk
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Precup, RE., Rădac, MB., Preitl, S., Petriu, E.M., Dragoş, CA. (2009). Iterative Feedback Tuning in Linear and Fuzzy Control Systems. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds) Towards Intelligent Engineering and Information Technology. Studies in Computational Intelligence, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03737-5_13
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-03736-8
Online ISBN:978-3-642-03737-5
eBook Packages:EngineeringEngineering (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative