Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Less Restrictive Synchronization Criteria in Complex Networks with Coupling Delays

  • Conference paper
Complex Sciences(Complex 2009)

Abstract

This paper considers the synchronization in complex networks with coupling delays, whose topologies could be be symmetric and asymmetric. Differing from most works on the synchronization in complex networks with coupling delays, this paper only uses a positively-defined function, which is definitely not a Krasovskii-Lyapunov function, to analyze the synchronization criteria. Further, we can derive novel but less restrictive synchronization criteria than those resulting from the Krasovskii-Lyapunov theory. Theoretical analysis and numerical simulations fully verify the main results.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–91 (2002)

    Article MathSciNet MATH  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., et al.: Complex networks: structure and dynamics. Phys. Repor. 424, 175–308 (2006)

    Article MathSciNet  Google Scholar 

  3. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  4. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article MathSciNet MATH  Google Scholar 

  5. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998)

    Article  Google Scholar 

  6. Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I 49, 54–62 (2002)

    Article MathSciNet  Google Scholar 

  7. Lü, J., Yu, X., Chen, G., et al.: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits Syst. I 51, 787–796 (2004)

    Article MathSciNet  Google Scholar 

  8. Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE. Trans. Auto. Contr. 50, 841–846 (2005)

    Article MathSciNet  Google Scholar 

  9. Lü, J., Yu, X., Chen, G.: Chaos synchronization of genearl complex dynamical networks. Physica A 334, 281–302 (2004)

    Article MathSciNet  Google Scholar 

  10. Stefanski, A., Wojewoda, J., Kapitaniak, et al.: Simple estimation of synchronization threshold in ensembles of diffusively coupled chaotic systems. Phys. Rev. E 70, 026217 (2004)

    Article  Google Scholar 

  11. Wu, C.W.: Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling. IEEE Trans. Circuits Syst. I 50, 294–297 (2003)

    Article MathSciNet  Google Scholar 

  12. Wu, C.W.: Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling. IEEE Trans. Circuits Syst. I 52, 282–286 (2005)

    Article  Google Scholar 

  13. Chen, M.: Some simple synchronization criteria for complex dynamical networks. IEEE Trans. Circuits Syst. II 53, 1185–1189 (2006)

    Article  Google Scholar 

  14. Chen, M.: Chaos synchronization in complex networks. IEEE Trans. Circuits Syst. I 55, 1335–1346 (2008)

    Article MathSciNet  Google Scholar 

  15. Li, C., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Physica A 343, 263–278 (2004)

    Article MathSciNet  Google Scholar 

  16. Lu, W., Chen, T., Chen, G.: Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay. Physica D 221, 118–134 (2006)

    Article MathSciNet MATH  Google Scholar 

  17. Zhou, J., Chen, T.: Synchronization in general complex delayed dynamical networks. IEEE Trans. Circuits Syst. I 53, 733–744 (2006)

    Article MathSciNet  Google Scholar 

  18. Kuang, Y.: Delay Differential Equations. Academic Press, London (1993)

    MATH  Google Scholar 

  19. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities. Academic Press, New York (1969)

    MATH  Google Scholar 

  20. Nicykescy, S.I.: Delay effects on stability: a robust control approach. Springer, London (2001)

    Google Scholar 

  21. Brierley, S.D., Chiasson, S.D., Lee, J.N., et al.: On stability independent of delay for linear systems. IEEE. Trans. Auto. Contr. 27, 252–254 (1982)

    Article MathSciNet MATH  Google Scholar 

  22. Hmamed, A.: Futher results on the robust stability of uncertain time-delay systems. Int. J. Systems Sci. 22, 605–614 (1991)

    Article MathSciNet MATH  Google Scholar 

  23. Mori, T.: Criteria for asymptotic stability of linear time-delay dystems. IEEE. Trans. Auto. Contr. 30, 158–161 (1985)

    Article MATH  Google Scholar 

  24. Mori, T., Kokame, H.: Stability of ẋ(t)=Ax(t)+Bx(t-τ). IEEE. Trans. Auto. Contr. 34, 460–463 (1989)

    Article MathSciNet MATH  Google Scholar 

  25. Lancaster, P.: Theory of matrices. Academic Press, New York (1969)

    MATH  Google Scholar 

  26. Chiou, J.S.: Stability analysis for a class of switched large-scale time-delay systems via time-switched method. IEE Pro. Contr. Theor. Appl. 153, 684–688 (2006)

    Article MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Mathematics, AMSS, Academia Sinica, Beijing, 100080, P.R. China

    Yun Shang

  2. Department of Automation, TNList, Tsinghua University, Beijing, 100084, P.R. China

    Maoyin Chen

Authors
  1. Yun Shang

    You can also search for this author inPubMed Google Scholar

  2. Maoyin Chen

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Network Technology Research Centre, Research Techno Plaza, Nanyang Technology University, 4th story X‘Frontiers, Block 50 Nanyang Drive, 637553, Singapore

    Jie Zhou

Rights and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Shang, Y., Chen, M. (2009). Less Restrictive Synchronization Criteria in Complex Networks with Coupling Delays. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_36

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp