Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Class of Three-Weight and Four-Weight Codes

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 5557))

Included in the following conference series:

Abstract

In this paper, a class of three-weight linear codes and a class of four-weight linear codes over GF(q) are presented and their weight distributions are determined. These codes are punctured from the irreducible cyclic codes, and contain optimal codes. Their duals contain also optimal codes.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumert, L.D., McEliece, R.J.: Weights of irreducible cyclic codes. Information and Control 20, 158–175 (1972)

    Article MathSciNet MATH  Google Scholar 

  2. Baumert, L.D., Mykkeltveit, J.: Weight distributions of some irreducible cyclic codes. DSN Progress Report 16, 128–131 (1973)

    Google Scholar 

  3. Calderbank, A.R., Goethals, J.-M.: Three-weight codes and association schemes. Philips J. Res. 39, 143–152 (1984)

    MathSciNet MATH  Google Scholar 

  4. Calkin, N.J., Key, J.D., de Resmini, M.J.: Minimum weight and dimension formulas for some geometric codes. Designs, Codes and Cryptography 17, 105–120 (1999)

    Article MathSciNet MATH  Google Scholar 

  5. Delsarte, P., Goethals, J.M.: Irreducible binary cyclic codes of even dimension. In: Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and Its Applications, Univ. North Carolina, Chapel Hill, NC, pp. 100–113 (1970)

    Google Scholar 

  6. Ding, C.: The weight distribution of some irreducible cyclic codes. IEEE Trans. Inform. Theory (to appear)

    Google Scholar 

  7. Ding, C., Luo, J., Niederreiter, H.: Two-weight codes punctured from irreducible cyclic codes. In: Li, Y., Ling, S., Niederreiter, H., Wang, H., Xing, C., Zhang, S. (eds.) Proc. of the First International Workshop on Coding Theory and Cryptography, pp. 119–124. World Scientific, Singapore (2008)

    Google Scholar 

  8. Ding, C., Niederreiter, H.: Cyclotomic linear codes of order 3. IEEE Trans. Inform. Theory 53, 2274–2277 (2007)

    Article MathSciNet MATH  Google Scholar 

  9. Goethals, J.M.: Factorization of cyclic codes. IEEE Trans. Inform. Theory 13, 242–246 (1967)

    Article MathSciNet  Google Scholar 

  10. Griera, M.: On s-sums-sets (s odd) and three-weight projective codes. In: Proc. AAECC, pp. 68–76 (1986)

    Google Scholar 

  11. Helleseth, T., Kløve, T., Mykkeltveit, J.: The weight distribution of irreducible cyclic codes with block length\(n_1((q^l-1)/N)\). Discrete Math. 18, 179–211 (1977)

    Article MathSciNet MATH  Google Scholar 

  12. Langevin, P.: A new class of two weight codes. In: Cohen, S., Niederreiter, H. (eds.) Finite Fields and Applications, pp. 181–187. Cambridge University Press, Cambridge (1996)

    Chapter  Google Scholar 

  13. MacWilliams, F., Seery, J.: The weight distributions of some minimal cyclic codes. IEEE Trans. Inform. Theory 27, 796–806 (1981)

    Article MathSciNet MATH  Google Scholar 

  14. Myerson, G.: Period polynomials and Gauss sums for finite fields. Acta Arith. 39, 251–264 (1981)

    MathSciNet MATH  Google Scholar 

  15. McEliece, R.J.: A class of two-weight codes. Jet Propulsion Laboratory Space Program Summary 37–41 IV, 264–266

    Google Scholar 

  16. McEliece, R.J.: Irreducible cyclic codes and Gauss sums. In: Combinatorics, Part 1: Theory of Designs, Finite Geometry and Coding Theory. Math. Centre Tracts, vol. 55, pp. 179–196. Math. Centrum, Amsterdam (1974)

    Google Scholar 

  17. McEliece, R.J., Rumsey Jr., H.: Euler products, cyclotomy, and coding. J. Number Theory 4, 302–311 (1972)

    Article MathSciNet MATH  Google Scholar 

  18. Moisio, M.J., Väänen, K.O.: Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes. IEEE Trans. Inform. Theory 45, 1244–1249 (1999)

    Article MathSciNet MATH  Google Scholar 

  19. Ray-Chaudhuri, D.K., Xiang, Q.: New necessary conditions for abelian Hadamard difference sets. J. of Statistical Planning and Inference 62, 69–79 (1997)

    Article MathSciNet MATH  Google Scholar 

  20. Schmidt, B., White, C.: All two-weight irreducible cyclic codes? Finite Fields Appl. 8, 1–17 (2002)

    Article MathSciNet MATH  Google Scholar 

  21. Segal, R., Ward, R.L.: Weight distributions of some irreducible cyclic codes. Mathematics of Computation 46, 341–354 (1986)

    Article MathSciNet MATH  Google Scholar 

  22. Storer, T.: Cyclotomy and Difference Sets. Markham, Chicago (1967)

    MATH  Google Scholar 

  23. Van der Vlugt, M.: On the weight hierarchy of irreducible cyclic codes. J. Comb. Theory Ser. A 71, 159–167 (1995)

    Article MathSciNet MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

    Cunsheng Ding

Authors
  1. Cunsheng Ding

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. National Computer Systems, Center for Information Technology,, 73 Science Park Drive, S0511, Republic of Singapore

    Yeow Meng Chee  & San Ling  & 

  2. National University of Defense Technology, 411073, Changshu Hunan, China

    Chao Li

  3. National Computer Systems, Center for Information Technology, 73 Science Park Drive, S0511, Republic of Singapore

    Huaxiong Wang  & Chaoping Xing  & 

Rights and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, C. (2009). A Class of Three-Weight and Four-Weight Codes. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C. (eds) Coding and Cryptology. IWCC 2009. Lecture Notes in Computer Science, vol 5557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01877-0_4

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp