Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Combining Authentication, Reputation and Classification to Make Phishing Unprofitable

  • Conference paper

Part of the book series:IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 297))

Included in the following conference series:

  • 1056Accesses

Abstract

We present and analyze a design of an filtering system to block email phishing messages, combining reputation, authentication and classification mechanisms. We present simple economical model and analysis, showing sufficient conditions on the precision of the content-classifier, to make phishing unprofitable.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning techniques for phishing detection. In: Cranor, L.F. (ed.) Proceedings of the Anti-Phishing Working Groups 2nd Annual eCrime Researchers Summit 2007, Pittsburgh, Pennsylvania, USA. ACM International Conference Proceeding Series, vol. 269, pp. 60–69. ACM, New York (2007),http://doi.acm.org/10.1145/1299015.1299021

    Google Scholar 

  2. Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J., Thomas, M.: DomainKeys Identified Mail (DKIM) signatures. Internet Request for Comment RFC 4871, Internet Engineering Task Force (2007),http://tools.ietf.org/html/4871

  3. del Castillo, M.D., Iglesias, Á., Serrano, J.I.: An integrated approach to filtering phishing E-mails. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 321–328. Springer, Heidelberg (2007),http://dx.doi.org/10.1007/978-3-540-75867-9_41

    Chapter  Google Scholar 

  4. Dhamija, R., Tygar, D., Hearst, M.: Why phishing works. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI 2006), Montreal, Quebec, Canada, pp. 581–590 (2006)

    Google Scholar 

  5. Duan, Z., Gopalan, K., Yuan, X.: Behavioral characteristics of spammers and their network reachability properties. In: Proc. of the International Conference on Communications (ICC), Glasgow, UK (June 2007)

    Google Scholar 

  6. Fette, I., Sadeh, N.M., Tomasic, A.: In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, pp. 649–656. ACM, New York (2007),http://doi.acm.org/10.1145/1242572.1242660

    Google Scholar 

  7. Herzberg, A., Jbara, A.: Security and identification indicators for browsers against spoofing and phishing attacks. IEEE Transactions on Internet Technology (2008)

    Google Scholar 

  8. Jakobsson, M., Ratkiewicz, J.: Designing ethical phishing experiments: a study of (rot13) ronl query features. In: WWW 2006: Proceedings of the 15th international conference on World Wide Web, pp. 513–522. ACM Press, New York (2006),http://doi.acm.org/10.1145/1135777.1135853

    Google Scholar 

  9. Leiba, B., Borenstein, N.S.: A multifaceted approach to spam reduction. In: CEAS 2004 - First Conference on Email and Anti-Spam (2004)

    Google Scholar 

  10. Lieba, B., Fenton, J.: DomainKeys Identified Mail (DKIM): Using digital signatures for domain verification. In: CEAS 2007: The Third Conference on Email and Anti-Spam (2007)

    Google Scholar 

  11. Lyon, J., Wong, M.W.: Sender ID: Authenticating E-mail. Internet Request for Comment RFC 4406, Internet Engineering Task Force (2006)

    Google Scholar 

  12. Resnick, P.: Internet message format. Request for comments 2822 (2001)

    Google Scholar 

  13. Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F., Hong, J.I., Nunge, E.: Anti-phishing phil: the design and evaluation of a game that teaches people not to fall for phish. In: Cranor, L.F. (ed.) Proceedings of the 3rd Symposium on Usable Privacy and Security, SOUPS, Pittsburgh, Pennsylvania, USA. ACM International Conference Proceeding Series, vol. 229, pp. 88–99. ACM, New York (2007),http://doi.acm.org/10.1145/1280680.1280692

    Chapter  Google Scholar 

  14. Wong, M., Schlitt, W.: Sender Policy Framework (SPF) for authorizing use of domains in E-mail, version 1. Internet Request for Comment RFC 4871, Internet Engineering Task Force (2006),http://tools.ietf.org/html/4408

Download references

Author information

Authors and Affiliations

  1. Computer Science Department, Bar Ilan University, Ramat Gan, 52900, Israel

    Amir Herzberg

Authors
  1. Amir Herzberg

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Information Security and Infrastructure Protection Research Group, Dept. of Informatics, Athens University of Economics and Business, 76 Patission Ave., P.O. Box, GR-10434, Athens, Greece

    Dimitris Gritzalis

  2. Computer Science Department, E.T.S.I. Informatica, University of Malaga, Campus Teatinos, 29071, Malaga, Spain

    Javier Lopez

Rights and permissions

Copyright information

© 2009 IFIP International Federation for Information Processing

About this paper

Cite this paper

Herzberg, A. (2009). Combining Authentication, Reputation and Classification to Make Phishing Unprofitable. In: Gritzalis, D., Lopez, J. (eds) Emerging Challenges for Security, Privacy and Trust. SEC 2009. IFIP Advances in Information and Communication Technology, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01244-0_2

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp