Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Noisy Multiobjective Optimization on a Budget of 250 Evaluations

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 5467))

  • 3393Accesses

Abstract

We consider methods for noisy multiobjective optimization, specifically methods for approximating a true underlying Pareto front when function evaluations are corrupted by Gaussian measurement noise on the objective function values. We focus on the scenario of a limited budget of function evaluations (100 and 250), where previously it was found that an iterative optimization method — ParEGO — based on surrogate modeling of the multiobjective fitness landscape was very effective in the non-noisy case. Our investigation here measures how ParEGO degrades with increasing noise levels. Meanwhile we introduce a new method that we propose for limited-budget and noisy scenarios: TOMO, deriving from the single-objective PB1 algorithm, which iteratively seeks the basins of optima using nonparametric statistical testing over previously visited points. We find ParEGO tends to outperform TOMO, and both (but especially ParEGO), are quite robust to noise. TOMO is comparable and perhaps edges ParEGO in the case of budgets of 100 evaluations with low noise. Both usually beat our suite of five baseline comparisons.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, B., Moore, A., Cohn, D.: A nonparametric approach to noisy and costly optimization. In: Langley, P. (ed.) Proc. 17th ICML, pp. 17–24. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  2. Beyer, H.-G.: Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Computer Methods in Applied Mechanics and Engineering 186(2-4), 239–267 (2000)

    Article MATH  Google Scholar 

  3. Beyer, H.-G., Sendhoff, B.: Robust optimization: A comprehensive survey. Computer Methods in Applied Mechanics and Engineering 196(33-34), 3190–3218 (2007)

    Article MathSciNet MATH  Google Scholar 

  4. Chen, J.-J., Goldberg, D.E., Ho, S.-Y., Sastry, K.: Fitness inheritance in multi-objective optimization. In: Proc. GECCO 2002, pp. 319–326. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  5. Corne, D., Jerram, N., Knowles, J., Oates, M.: PESA-II: Region-based selection in evolutionary multiobjective optimization. In: GECCO 2001, pp. 283–290. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  6. Davies, Z.S., Gilbert, R.J., Merry, R.J., Kell, D.B., Theodorou, M.K., Griffith, G.W.: Efficient improvement of silage additives by using genetic algorithms. In: Applied and Environmental Microbiology, pp. 1435–1443 (2000)

    Google Scholar 

  7. Deb, K., Goldberg, D.: An Investigation of Niche and Species Formation in Genetic Function Optimization. In: Proc. 3rd International Conference on Genetic Algorithms, pp. 42–50. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization. Technical Report 112, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)

    Google Scholar 

  9. Ducheyne, E.I., De Baets, B., De Wulf, R.: Is fitness inheritance useful for real-world applications? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 31–42. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Dunn, E., Olague, G.: Multi-objective Sensor Planning for Efficient and Accurate Object Reconstruction. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 312–321. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Emmerich, M., Naujoks, B.: Metamodel Assisted Multiobjective Optimisation Strategies and their Application in Airfoil Design. In: Parmee, I. (ed.) Adaptive Computing in Design and Manufacture VI, pp. 249–260. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Evans, J.R.G., Edirisinghe, M.J., Eames, P.V.C.J.: Combinatorial searches of inorganic materials using the inkjet printer: science philosophy and technology. Journal of the European Ceramic Society 21, 2291–2299 (2001)

    Article  Google Scholar 

  13. Gaspar-Cunha, A., Vieira, A.S.: A hybrid multi-objective evolutionary algorithm using an inverse neural network. In: Hybrid Metaheuristics (HM 2004) Workshop at ECAI 2004, pp. 25–30 (2004),http://iridia.ulb.ac.be/~hm2004/proceedings/

  14. Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Transactions on Robots 21(3), 402–410 (2005)

    Article  Google Scholar 

  15. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models. Journal of Global Optimization 34(3), 441–466 (2006)

    Article MathSciNet MATH  Google Scholar 

  16. Jeong, S., Minemura, Y., Obayashi, S.: Optimisation of combustion chamber for diesel engine using kriging model. Journal of Fluid Science and Technology 1(2), 138–146 (2006)

    Article  Google Scholar 

  17. Jeong, S., Suzuki, K., Obayashi, S., Kirita, M.: Improvement of nonlinear lateral characteristics of lifting-body type reentry vehicle using optimization algorithm. In: Proc. of AIAA Infotech-Aerospace Conference 2007, pp. 1–15. AIAA (2007)

    Google Scholar 

  18. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing-A Fusion of Foundations, Methodologies and Applications 9(1), 3–12 (2005)

    Google Scholar 

  19. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13, 455–492 (1998)

    Article MathSciNet MATH  Google Scholar 

  20. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Congress on Evolutionary Computation (CEC 2002), Piscataway, New Jersey, vol. 1, pp. 711–716. IEEE Service Center, Los Alamitos (2002)

    Google Scholar 

  21. Knowles, J., Hughes, E.J.: Multiobjective Optimization on a Budget of 250 Evaluations. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 176–190. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Knowles, J.: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comp. 10(1), 50–66 (2006)

    Article  Google Scholar 

  23. Knowles, J., Nakayama, H.: Meta-Modeling in Multiobjective Optimization. In: Branke, D., Deb, K., Miettinen, S., Słowiński, R. (eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches. LNCS, vol. 5252. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Laumanns, M., Ocenasek, J.: Bayesian optimization algorithms for multi-objective optimization. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 298–307. Springer, Heidelberg (2002)

    Google Scholar 

  25. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  26. Nain, P.K.S., Deb, K.: A computationally effective multi-objective search and optimization technique using coarse-to-fine grain modeling. Technical Report Kangal Report No. 2002005, IITK, Kanpur, India (2002)

    Google Scholar 

  27. Nakayama, H., Yun, Y.: Multi-objective Model Predictive Optimization using Computational Intelligence. In: Artificial Intelligence in Theory and Practice II, pp. 319–328. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. O’Hagan, S., Dunn, W., Knowles, J., Broadhurst, D., Williams, R., Ashworth, J., Cameron, M., Kell, D.: Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Analytical Chemistry 79(2), 464–476 (2007)

    Article  Google Scholar 

  29. Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On Test Functions for Evolutionary Multi-objective Optimization. In: Parallel Problem Solving from Nature - PPSN VIII, pp. 792–802. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Ong, Y.S., Nair, P.B., Keane, A.J., Zhou, Z.Z.: Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation. Springer, Heidelberg (2004)

    Google Scholar 

  31. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  32. Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments (with discussion). Statistical Science 4, 409–435 (1989)

    Google Scholar 

  33. Bosman, P.A.N., Thierens, D.: Multi-objective Optimization with the Naive MIDEA. Studies in Fuzziness and Soft Computing 192, 123–157 (2006)

    Article MATH  Google Scholar 

  34. van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithm Test Suites. In: Proc. 1999 ACM Symposium on Applied Computing, pp. 351–357. ACM, New York (1999)

    Chapter  Google Scholar 

  35. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Computer Science, University of Manchester, UK

    Joshua Knowles

  2. School of Mathematics and Computer Science, Heriot-Watt University, UK

    David Corne & Alan Reynolds

Authors
  1. Joshua Knowles

    You can also search for this author inPubMed Google Scholar

  2. David Corne

    You can also search for this author inPubMed Google Scholar

  3. Alan Reynolds

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Engineering Science, The University of Auckland, 70 Symonds Street, Room 415, 1001, Auckland, New Zealand

    Matthias Ehrgott

  2. Faculty of Science and Technolgoy, Department of Electronic Engineering and Informatics, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal

    Carlos M. Fonseca

  3. Laboratoire d’ Informatique de Nantes -LINA, UMR CNRS 6241, Université de Nantes, 2, Rue de la Houssinière, BP 92208, 44322, Nantes Cedex 03, France

    Xavier Gandibleux

  4. LERIA, Faculty of Sciences, Université d’Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 01, France

    Jin-Kao Hao

  5. Université de Bretagne-sud - UEB CNRS, UMR 3192 - Lab-STICC, Centre de Recherche,, BP 92116, 56321, Lorient Cedex, France

    Marc Sevaux

Rights and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knowles, J., Corne, D., Reynolds, A. (2009). Noisy Multiobjective Optimization on a Budget of 250 Evaluations. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, JK., Sevaux, M. (eds) Evolutionary Multi-Criterion Optimization. EMO 2009. Lecture Notes in Computer Science, vol 5467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01020-0_8

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp