Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Semi-supervised On-Line Boosting for Robust Tracking

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 5302))

Included in the following conference series:

Abstract

Recently, on-line adaptation of binary classifiers for tracking have been investigated. On-line learning allows for simple classifiers since only the current view of the object from its surrounding background needs to be discriminiated. However, on-line adaption faces one key problem: Each update of the tracker may introduce an error which, finally, can lead to tracking failure (drifting). The contribution of this paper is a novel on-line semi-supervised boosting method which significantly alleviates the drifting problem in tracking applications. This allows to limit the drifting problem while still staying adaptive to appearance changes. The main idea is to formulate the update process in a semi-supervised fashion as combined decision of a given prior and an on-line classifier. This comes without any parameter tuning. In the experiments, we demonstrate real-time tracking of our SemiBoost tracker on several challenging test sequences where our tracker outperforms other on-line tracking methods.

This work has been supported by the Austrian Joint Research Project Cognitive Vision under projects S9103-N04 and S9104-N04, the FFG project EVis (813399) under the FIT-IT program and the Austrian Science Fund (FWF) under the doctoral program Confluence of Vision and Graphics W1209.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Avidan, S.: Support vector tracking. IEEE Trans. PAMI 26, 1064–1072 (2004)

    Article  Google Scholar 

  2. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In: Proc. CVPR, vol. 2, pp. 775–781 (2005)

    Google Scholar 

  3. Özuysal, M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code. In: CVPR (2007)

    Google Scholar 

  4. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proc. BMVC, vol. 1, pp. 47–56 (2006)

    Google Scholar 

  5. Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. PAMI 27(10), 1631–1643 (2005)

    Article  Google Scholar 

  6. Lim, J., Ross, D., Lin, R., Yang, M.: Incremental learning for visual tracking. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) NIPS, vol. 17, pp. 793–800. MIT Press, Cambridge (2005)

    Google Scholar 

  7. Avidan, S.: Ensemble tracking. In: Proc. CVPR, vol. 2, pp. 494–501 (2005)

    Google Scholar 

  8. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, vol. 1, pp. 260–267 (2006)

    Google Scholar 

  9. Matthews, I., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. PAMI 26, 810–815 (2004)

    Article  Google Scholar 

  10. Grabner, M., Grabner, H., Bischof, H.: Learning features for tracking. In: Proc. CVPR (2007)

    Google Scholar 

  11. Tang, F., Brennan, S., Zhao, Q., Tao, H.: Co-tracking using semi-supervised support vector machines. In: Proc. ICCV, pp. 1–8 (2007)

    Google Scholar 

  12. Woodley, T., Stenger, B., Cipolla, R.: Tracking using online feature selection and a local generative model. In: Proc. BMVC (2007)

    Google Scholar 

  13. Grossberg, S.: Competitive learning: From interactive activation to adaptive resonance. Neural networks and natural intelligence, 213–250 (1998)

    Google Scholar 

  14. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR, vol. I, pp. 511–518 (2001)

    Google Scholar 

  15. Li, Y., Ai, H., Yamashita, T., Lao, S., Kawade, M.: Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespans. In: Proc. CVPR, pp. 1–8 (2007)

    Google Scholar 

  16. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison (2005)

    Google Scholar 

  17. Mallapragada, P.K., Jin, R., Jain, A.K., Liu, Y.: Semiboost: Boosting for semi-supervised learning. Technical report, Department of Computer Science and Engineering, Michigan State University (2007)

    Google Scholar 

  18. Leistner, C., Grabner, H., Bischof, H.: Semi-supervised boosting using visual similarity learning. In: Proc. CVPR (to appear, 2008)

    Google Scholar 

  19. Schapire, R.: The boosting approach to machine learning: An overview. In: Proceedings MSRI Workshop on Nonlinear Estimation and Classification (2001)

    Google Scholar 

  20. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article MathSciNet MATH  Google Scholar 

  21. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2), 337–407 (2000)

    Article MathSciNet MATH  Google Scholar 

  22. Tieu, K., Viola, P.: Boosting image retrieval. In: Proc. CVPR, pp. 228–235 (2000)

    Google Scholar 

  23. Oza, N., Russell, S.: Online bagging and boosting. In: Proceedings Artificial Intelligence and Statistics, pp. 105–112 (2001)

    Google Scholar 

  24. Hertz, T., Bar-Hillel, A., Weinshall, D.: Learning distance functions for image retrieval. In: Proc. CVPR, vol. 2, pp. 570–577 (2004)

    Google Scholar 

  25. Balcan, M.F., Blum, A., Yang, K.: Co-training and expansion: Towards bridging theory and practice. In: NIPS. MIT Press, Cambridge (2004)

    Google Scholar 

  26. Girosi, F., Chan, N.: Prior knowledge and the creation of virtual examples for rbf networks. In: IEEE Workshop on Neural Networks for Signal Processing (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Computer Graphics and Vision, Graz University of Technology, Austria

    Helmut Grabner, Christian Leistner & Horst Bischof

  2. Computer Vision Laboratory, ETH Zurich, Switzerland

    Helmut Grabner

Authors
  1. Helmut Grabner

    You can also search for this author inPubMed Google Scholar

  2. Christian Leistner

    You can also search for this author inPubMed Google Scholar

  3. Horst Bischof

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Computer Science Department, University of Illinois at Urbana Champaign, 3310 Siebel Hall, Urbana, IL 61801, USA

    David Forsyth

  2. Department of Computing, Oxford Brookes University, OX33 1HX, Wheatley, Oxford, UK

    Philip Torr

  3. Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, UK

    Andrew Zisserman

Electronic Supplementary Material

Rights and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grabner, H., Leistner, C., Bischof, H. (2008). Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds) Computer Vision – ECCV 2008. ECCV 2008. Lecture Notes in Computer Science, vol 5302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88682-2_19

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp