Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 4945))
Included in the following conference series:
358Accesses
Abstract
The Girault-Poupard-Stern (GPS) identification scheme is designed for public key cryptography on very restricted devices. We propose a variant of GPS for Koblitz elliptic curves using Frobenius expansions. The idea is to use Frobenius expansions throughout the protocol, so there is no need to convert between integers and Frobenius expansions. We give a security analysis of the proposed scheme.
The work described in this paper has been supported in part by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT.
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2006)
Benits, W.: Applications of Frobenius expansions in elliptic curve cryptography, PhD thesis in preparation
Benits, W., Galbraith, S.: The Frobenius expansion DLP, preprint
Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833. pp. 29–50. Springer, Heidelberg (2007)
Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. Journal of Symbolic Computation 24, 235–265 (1997)
Ebeid, N., Hasan, M.A.: Onτ-adic representations of integers. Designs, Codes and Cryptography 45(3), 271–296 (2007)
Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryptology 1(2), 77–94 (1988)
Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature schemes based on groups of unknown order. J. Crypt. 19(4), 463–487 (2006)
Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)
Girault, M., Lefranc, D.: Public key authentication with one (online) single addition. In: Joye, M., et al. (eds.) CHES 2004. LNCS, vol. 3156. pp. 413–427. Springer, Heidelberg (2004)
Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576. pp. 279–287. Springer, Heidelberg (1992)
Müller, V.: Fast multiplication on elliptic curves over small fields of characteristic two. Journal of Cryptology 11(4), 219–234 (1998)
Okamoto, T., Katsuno, H., Okamoto, E.: A fast signature scheme based on new on-line computation. In: Boyd, C., Mao, W. (eds.) Information Security. LNCS, vol. 2581. pp. 111–121. Springer, Heidelberg (2003)
Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentication and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403. pp. 422–436. Springer, Heidelberg (1998)
Rivest, R.L., Cormen, T.H., Leiserson, C.E., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press and McGraw-Hill (2001)
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435. pp. 239–252. Springer, Heidelberg (1990)
Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)
Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139. pp. 355–367. Springer, Heidelberg (2001)
Solinas, J.A.: An improved algorithm for arithmetic on a family of elliptic curves. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer, Heidelberg (1997)
Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Cryptography 19(2-3), 195–249 (2000)
Author information
Authors and Affiliations
Mathematics Department, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
Waldyr D. Benits Jr. & Steven D. Galbraith
- Waldyr D. Benits Jr.
You can also search for this author inPubMed Google Scholar
- Steven D. Galbraith
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Fakultät Medien, Bauhaus-Universität Weimar, Bauhausstr. 11, 99423, Weimar, Germany
Stefan Lucks
Horst Görtz Institute for IT Security, Ruhr-University of Bochum, Germany
Ahmad-Reza Sadeghi
Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
Christopher Wolf
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Benits, W.D., Galbraith, S.D. (2008). The GPS Identification Scheme Using Frobenius Expansions. In: Lucks, S., Sadeghi, AR., Wolf, C. (eds) Research in Cryptology. WEWoRC 2007. Lecture Notes in Computer Science, vol 4945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88353-1_2
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-88352-4
Online ISBN:978-3-540-88353-1
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative