Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

The GPS Identification Scheme Using Frobenius Expansions

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 4945))

Included in the following conference series:

  • 358Accesses

Abstract

The Girault-Poupard-Stern (GPS) identification scheme is designed for public key cryptography on very restricted devices. We propose a variant of GPS for Koblitz elliptic curves using Frobenius expansions. The idea is to use Frobenius expansions throughout the protocol, so there is no need to convert between integers and Frobenius expansions. We give a security analysis of the proposed scheme.

The work described in this paper has been supported in part by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  2. Benits, W.: Applications of Frobenius expansions in elliptic curve cryptography, PhD thesis in preparation

    Google Scholar 

  3. Benits, W., Galbraith, S.: The Frobenius expansion DLP, preprint

    Google Scholar 

  4. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833. pp. 29–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. Journal of Symbolic Computation 24, 235–265 (1997)

    Article MATH MathSciNet  Google Scholar 

  6. Ebeid, N., Hasan, M.A.: Onτ-adic representations of integers. Designs, Codes and Cryptography 45(3), 271–296 (2007)

    Article MathSciNet  Google Scholar 

  7. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryptology 1(2), 77–94 (1988)

    Article MATH MathSciNet  Google Scholar 

  8. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature schemes based on groups of unknown order. J. Crypt. 19(4), 463–487 (2006)

    Article MATH MathSciNet  Google Scholar 

  9. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  10. Girault, M., Lefranc, D.: Public key authentication with one (online) single addition. In: Joye, M., et al. (eds.) CHES 2004. LNCS, vol. 3156. pp. 413–427. Springer, Heidelberg (2004)

    Google Scholar 

  11. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576. pp. 279–287. Springer, Heidelberg (1992)

    Google Scholar 

  12. Müller, V.: Fast multiplication on elliptic curves over small fields of characteristic two. Journal of Cryptology 11(4), 219–234 (1998)

    Article MATH MathSciNet  Google Scholar 

  13. Okamoto, T., Katsuno, H., Okamoto, E.: A fast signature scheme based on new on-line computation. In: Boyd, C., Mao, W. (eds.) Information Security. LNCS, vol. 2581. pp. 111–121. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentication and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403. pp. 422–436. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Rivest, R.L., Cormen, T.H., Leiserson, C.E., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press and McGraw-Hill (2001)

    Google Scholar 

  16. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435. pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  17. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)

    Article MATH MathSciNet  Google Scholar 

  18. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139. pp. 355–367. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Solinas, J.A.: An improved algorithm for arithmetic on a family of elliptic curves. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer, Heidelberg (1997)

    Google Scholar 

  20. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Cryptography 19(2-3), 195–249 (2000)

    Article MATH MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Mathematics Department, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK

    Waldyr D. Benits Jr. & Steven D. Galbraith

Authors
  1. Waldyr D. Benits Jr.

    You can also search for this author inPubMed Google Scholar

  2. Steven D. Galbraith

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Fakultät Medien, Bauhaus-Universität Weimar, Bauhausstr. 11, 99423, Weimar, Germany

    Stefan Lucks

  2. Horst Görtz Institute for IT Security, Ruhr-University of Bochum, Germany

    Ahmad-Reza Sadeghi

  3. Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

    Christopher Wolf

Rights and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benits, W.D., Galbraith, S.D. (2008). The GPS Identification Scheme Using Frobenius Expansions. In: Lucks, S., Sadeghi, AR., Wolf, C. (eds) Research in Cryptology. WEWoRC 2007. Lecture Notes in Computer Science, vol 4945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88353-1_2

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp