Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

An Improved Multi-task Learning Approach with Applications in Medical Diagnosis

  • Conference paper

Abstract

We propose a family of multi-task learning algorithms for collaborative computer aided diagnosis which aims to diagnose multiple clinically-related abnormal structures from medical images. Our formulations eliminate features irrelevant to all tasks, and identify discriminative features for each of the tasks. A probabilistic model is derived to justify the proposed learning formulations. By equivalence proof, some existing regularization-based methods can also be interpreted by our probabilistic model as imposing a Wishart hyperprior. Convergence analysis highlights the conditions under which the formulations achieve convexity and global convergence. Two real-world medical problems: lung cancer prognosis and heart wall motion analysis, are used to validate the proposed algorithms.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Roehrig, J.: The promise of CAD in digital mamography. European Journal of Radiology 31, 35–39 (1999)

    Article  Google Scholar 

  2. Armato-III, S.G., Giger, M.L., MacMahon, H.: Automated detection of lung nodules in CT scans: preliminary results. Medical Physics 28(8), 1552–1561 (2001)

    Article  Google Scholar 

  3. Suzuki, K., Kusumoto, M., Watanabe, S., Tsuchiya, R., Asamura, H.: Radiologic classfication of small adenocarcinoma of the lung: Radiologic-pathologic correlation and its prognostic impact. The Annals of Thoracic Surgery CME Program 81, 413–420 (2006)

    Article  Google Scholar 

  4. Caruana, R.: Multitask learning. Machine Learning 28(1), 41–75 (1997)

    Article  Google Scholar 

  5. Yu, K., Tresp, V., Schwaighofer, A.: Learning Gaussian processes from multiple tasks. In: ICML 2005 (2005)

    Google Scholar 

  6. Ando, R.K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research 6, 1855–1887 (2005)

    MathSciNet  Google Scholar 

  7. Heskes, T.: Empirical Bayes for learning to learn. In: Proc. 17th International Conf. on Machine Learning, pp. 367–374. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  8. Jebara, T.: Multi-task feature and kernel selection for SVMs. In: Proceedings of the 21st International Conference on Machine learning (2004)

    Google Scholar 

  9. Obozinski, G., Taskar, B., Jordan, M.I.: Multi-task feature selection. Technical report, UC Berkeley (2006)

    Google Scholar 

  10. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 41–48. MIT Press, Cambridge (2007)

    Google Scholar 

  11. Srebro, N., Rennie, J.D.M., Jaakola, T.S.: Maximum-margin matrix factorization. In: NIPS 2005 (2005)

    Google Scholar 

  12. Xiong, T., Bi, J., Rao, R.B., Cherkassky, V.: Probabilistic joint feature selection for multi-task learning. In: SIAM International Conference on Data Mining (2006)

    Google Scholar 

  13. Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural, Parallel Sci. Comput. 11, 351–368 (2003)

    MATH MathSciNet  Google Scholar 

  14. Bezdek, J.C., Hathaway, R.J.: Some notes on alternating optimization. In: Pal, N.R., Sugeno, M. (eds.) AFSS 2002. LNCS (LNAI), vol. 2275, pp. 288–300. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Evegniou, T., Pontil, M.: Regularized multi–task learning. In: Proc. of 17–th SIGKDD Conf. on Knowledge Discovery and Data Mining (2004)

    Google Scholar 

  16. Rao, R.B., Bi, J., Fung, G., Salganicoff, M., Obuchowski, N., Naidich, D.: LungCAD: a clinically approved, machine learning system for lung cancer detection. In: ACM International Conference on Knowledge Discovery and Data Mining (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. CAD and Knowledge Solutions, Siemens Medical Solutions, 20 Valley Stream Parkway, Malvern, PA 19355, USA

    Jinbo Bi, Shipeng Yu, Murat Dundar & R. Bharat Rao

  2. Risk Management, Applied Research, eBay Inc., 2145 Hamilton Avenue, San Jose, CA 95125, USA

    Tao Xiong

Authors
  1. Jinbo Bi

    You can also search for this author inPubMed Google Scholar

  2. Tao Xiong

    You can also search for this author inPubMed Google Scholar

  3. Shipeng Yu

    You can also search for this author inPubMed Google Scholar

  4. Murat Dundar

    You can also search for this author inPubMed Google Scholar

  5. R. Bharat Rao

    You can also search for this author inPubMed Google Scholar

Editor information

Walter Daelemans Bart Goethals Katharina Morik

Rights and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bi, J., Xiong, T., Yu, S., Dundar, M., Rao, R.B. (2008). An Improved Multi-task Learning Approach with Applications in Medical Diagnosis. In: Daelemans, W., Goethals, B., Morik, K. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2008. Lecture Notes in Computer Science(), vol 5211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87479-9_26

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp