Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Speeding-Up ACO Implementation by Decreasing the Number of Heuristic Function Evaluations in Feature Selection Problem

  • Conference paper

Part of the book series:Advances in Soft Computing ((AINSC,volume 49))

  • 722Accesses

Abstract

In this paper we study a model to feature selection based on Ant Colony Optimization and Rough Set Theory. The algorithm looks for reducts by using ACO as search method and RST offers the heuristic function to measure the quality of one feature subset. Major results of using this approach are shown and others are referenced. Recently, runtime analyses of Ant Colony Optimization algorithms have been studied also. However the efforts are limited to specific classes of problems or simplified algorithm’s versions, in particular studying a specific part of the algorithms like the pheromone influence. From another point of view, this paper presents results of applying an improved ACO implementation which focuses on decreasing the number of heuristic function evaluations needed.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Giráldez, R., Díaz-Díaz, N., Nepomuceno, I., Aguilar-Ruiz, J.S.: An Approach to Reduce the cost of Evaluation in Evolutionary Learning. In: Cabestany, J., Gonzalez Prieto, A., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 804–811. Springer, Heidelberg (2005)

    Google Scholar 

  2. Dorigo, M., DiCaro, G., Gambardella, L.M.: Ant colonies for discrete optimization. Artificial Life 5, 137–172 (1999)

    Article  Google Scholar 

  3. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Zhang, H., Sun, G.: Feature selection using tabu search method. Pattern Recognition Letters 35, 710–711 (2002)

    Google Scholar 

  5. Silver, E.: An overview of heuristic solution methods. Journal of the Operational Research Society 55, 936–956 (2004)

    Article MATH  Google Scholar 

  6. Jensen, R., Shen, Q.: Finding Rough Set Reducts with Ant Colony Optimization. In: UK Workshop on Computational Intelligence, 15–22 (2003)

    Google Scholar 

  7. Bello, R., Nowé, A.: A Model based on Ant Colony System and Rough Set Theory to Feature Selection. In: Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 275–276 (2005)

    Google Scholar 

  8. Bello, R., Nowé, A.: Using Ant Colony System meta-heuristic and Rough Set Theory to Fea-ture Selection. In: The 6th Metaheuristics International Conference (MIC 2005), Vienna, Austria (2005)

    Google Scholar 

  9. Dorigo, M.: Scolarpedia, vol. 2 (2007)

    Google Scholar 

  10. Pawlak, Z.: Rough sets. International Journal of Information & Computer Sciences 11, 341–356 (1982)

    Article MATH MathSciNet  Google Scholar 

  11. Tay, F.E.S.L.: Economic and financial prediction using rough set model. European Jour-nal of Operational Research 141, 641–659 (2002)

    Article MATH  Google Scholar 

  12. Komorowski, J.a.P.Z.: Rough Set: A tutorial. Rough Fuzzy Hybridization: A new trend in decision making, 3–98 (1999)

    Google Scholar 

  13. Bell, D., Guan, J.: Computational methods for rough classification and discovery. Journal of ASIS 49, 403–414 (1998)

    Google Scholar 

  14. Wroblewski, J.: Genetic algorithms in decomposition and classification problems. In: Polkowski, L., Skowron, A. (eds.) Rough sets in Knowledge Discovery 1: Applications, pp. 472–492. Physica-Verlag

    Google Scholar 

  15. Wang, X.: Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 28, 459–471 (2007)

    Article  Google Scholar 

  16. Doerr, B., Neumann, F., Sudholt, D., Witt, C.: On the Runtime Analysis of the 1-ANT ACO Algorithm. In: GECCO 2007 (2007)

    Google Scholar 

  17. Neumann, F., Witt, C.: Runtime analysis of a simple Ant Colony Optimization algorithm. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618–627. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Gutjahr, W.J.: First steps to the runtime complexity analysis of ant colony optimization. Computers and Operations Research (2007)

    Google Scholar 

  19. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)

    Article MATH MathSciNet  Google Scholar 

  20. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998),http://www.ics.uci.edu/~mlearn/MLRepository.html

  21. Jensen, R., Shen, Q.: Fuzzy-Rough Data Reduction with Ant Colony Optimization. Fuzzy Set and System 149, 5–20 (2005)

    Article MATH MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, Universidad Central de Las Villas, Cuba

    Yudel Gómez & Rafael Bello

  2. Comp Lab, Department of Computer Science, Vrije Universiteit Brussel, Belgium

    Ann Nowé & Frank Bosmans

Authors
  1. Yudel Gómez

    You can also search for this author inPubMed Google Scholar

  2. Rafael Bello

    You can also search for this author inPubMed Google Scholar

  3. Ann Nowé

    You can also search for this author inPubMed Google Scholar

  4. Frank Bosmans

    You can also search for this author inPubMed Google Scholar

Editor information

Juan M. Corchado Juan F. De Paz Miguel P. Rocha Florentino Fernández Riverola

Rights and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez, Y., Bello, R., Nowé, A., Bosmans, F. (2009). Speeding-Up ACO Implementation by Decreasing the Number of Heuristic Function Evaluations in Feature Selection Problem. In: Corchado, J.M., De Paz, J.F., Rocha, M.P., Fernández Riverola, F. (eds) 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB 2008). Advances in Soft Computing, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85861-4_27

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp