Summary
Matroids are applied in electric engineering for over 30 years. These applications motivated the investigation of some new, pure matroidal questions. Such results are surveyed for readers with mathematical (rather than engineering) background.
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bouchet, A., Cunningham, W.H.: Delta-matroids, jump systems and bisubmodular polyhedra. SIAM J. Discrete Math. 8, 17–32 (1995)
Brändén, P.: Polynomials with the half-plane property and matroid theory. Adv. Math. 216, 302–320 (2007)
Chaiken, S.: A combinatorial proof of the all minors matrix tree theorem. SIAM J. Alg. Discrete Math. 3, 319–329 (1982)
Chaiken, S., Kleitman, D.J.: Matrix tree theorems. J. Comb. Theory, Ser. A 24, 377–381 (1978)
Choe, Y.B.: Polynomials with the half-plane property and the support theorems. J. Comb. Theory, Ser. B 94, 117–145 (2005)
Choe, Y.B.: A combinatorial proof of the Rayleigh formula for graphs. Discrete Math. (2007). doi:10.1016/j.disc.2007.11.011
Choe, Y.B., Oxley, J., Sokal, A., Wagner, D.: Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. 32, 88–187 (2004)
Choe, Y.B., Wagner, D.G.: Rayleigh matroids. Comb. Probab. Comput. 15, 765–781 (2006)
Feder, T., Mihail, M.: Balanced matroids. In: Proc. of 24th STOC, pp. 26–38 (1992)
Iri, M., Tomizawa, N.: A unifying approach to fundamental problems in network theory by means of matroids. Trans. Inst. Electron. Commun. Eng. Jpn. 58-A, 33–40 (1975)
Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchungen der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)
Lovász, L.: The membership problem in jump systems. J. Comb. Theory, Ser. B 70, 45–66 (1997)
Lovász, L., Recski, A.: On the sum of matroids. Acta Math. Acad. Sci. Hungar. 24, 329–333 (1973)
Maxwell, J.C.: Electricity and Magnetism. Clarendon, Oxford (1892)
Narayanan, H.: Theory of matroids and network analysis. PhD. thesis, Indian Institute of Technology, Bombay (1974)
Recski, A.: On partitional matroids with applications. Colloq. Math. Soc. János Bolyai 10, 1169–1179 (1973)
Recski, A.: On the sum of matroids II. In: Proc. of 5th British Combinatorial Conf., Aberdeen, pp. 515–520 (1975)
Recski, A.: An algorithm to determine whether the sum of some graphic matroids is graphic. Colloq. Math. Soc. János Bolyai 25, 647–656 (1981)
Recski, A.: Matroid Theory and Its Applications in Electric Network Theory and in Statics. Springer, Berlin (1989)
Recski, A., Szabó, J.: On the generalization of the matroid parity problem. In: Graph Theory. Trends in Mathematics, pp. 347–354. Birkhäuser, Basel (2006)
Seymour, P., Welsh, D.J.A.: Combinatorial applications of an inequality from statistical mechanics. Math. Proc. Camb. Philos. Soc. 77, 485–495 (1975)
Tutte, W.T.: Lectures on matroids. J. Res. Natl. Bur. Stand., Ser. B 69, 1–47 (1965)
Wagner, D.G.: Matroid inequalities from electrical network theory. Electron. J. Comb.11 #A1 (2005a)
Wagner, D.G.: Rank-three matroids are Rayleigh. Electron. J. Comb.12 #N81 (2005b)
Wagner, D.G., Wei, Y.: A criterion for the half-plane property. Discrete Math. (2008). doi:10.1016/j.disc.2008.02.005
Whitney, H.: Non-separable and planar graphs. Trans. Am. Math. Soc. 34, 339–362 (1932)
Whitney, H.: 2-isomorphic graphs. Am. J. Math. 55, 245–254 (1933)
Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 57, 509–533 (1935)
Whittle, G.: On matroids representable over GF(3) and other fields. Trans. Am. Math. Soc. 349, 579–603 (1997)
Author information
Authors and Affiliations
Department of Computer Science and Information Theory, Budapest University of Technology and Economics, 1521, Budapest, P.O.B. 91, Hungary
András Recski
- András Recski
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Industrial and Systems Engineering, Georgia Tech, 765 Ferst Drive, Atlanta, Georgia, 30332-0205, USA
William Cook
Institute of Mathematics, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
László Lovász
Research Institute for Discrete Mathematics, University of Bonn, Lennéstr. 2, 53113, Bonn, Germany
Jens Vygen
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Recski, A. (2009). Matroids—the Engineers’ Revenge. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_18
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-76795-4
Online ISBN:978-3-540-76796-1
eBook Packages:Mathematics and StatisticsMathematics and Statistics (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative