Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Solving a Bi-objective Vehicle Routing Problem by Pareto-Ant Colony Optimization

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 4638))

Abstract

In this paper we propose the application of Pareto ant colony optimization (PACO) in solving a bi-objective capacitated vehicle routing problem with route balancing (CVRPRB). The objectives of the problem are minimization of the tour length and balancing the routes. We propose PACO as our response to the deficiency of the Pareto-based local search (P-LS) approach, which we also developed to solve CVRPRB. The deficiency of P-LS is the lack of information flow among its pools of solutions. PACO is a natural choice in addressing this deficiency since PACO and P-LS are similar in structure. It resolves the absence of information flow through its pheromone values. Several test instances are used to demonstrate the contribution and importance of information flow among the pools of solutions. Computational results show that PACO improves P-LS in most instances with respect to different performance metrics.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dantzig, G., Ramsey, J.: The truck dispatching problem. Management Science 6, 80–91 (1959)

    Article MATH MathSciNet  Google Scholar 

  2. Lenstra, J., Kan, A.: Complexity of vehicle routing and scheduling problem. Networks 11, 221–227 (1981)

    Article  Google Scholar 

  3. Pasia, J.M., Doerner, K.F., F., H.R., Reimann, M.: A population-based local search for solving a bi-objective vehicle routing problem. In: Cotta, C., van Hemert, J. (eds.) Evolutionary Computation in Combinatorial Optimisation - EvoCOP 2007. LNCS, vol. 4446, pp. 166–175. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Doerner, K., Gutjahr, W., Hartl, R., Strauss, C., Stummer, C.: Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research 131, 79–99 (2004)

    Article MATH MathSciNet  Google Scholar 

  5. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  6. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of delivery points. Operations Research 12, 568–581 (1964)

    Google Scholar 

  7. Doerner, K., Gronalt, M., Hartl, R.F., Reimann, M., Strauss, C., Stummer, M.: SavingsAnts for the vehicle routing problem. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 11–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Jozefowiez, N., Semet, F., Talbi, E.: Parallel and hybrid models for multi-objective optimization: Application to the vehicle routing problem. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VII. LNCS, vol. 2439, pp. 271–280. Springer, Heidelberg (2002)

    Google Scholar 

  9. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.) Combinatorial Optimization, John Wiley and Sons, Chichester (1979)

    Google Scholar 

  10. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical Report TIK-Report No. 214, Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland (2006)

    Google Scholar 

  11. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  12. Hansen, M., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-dominated set. Technical Report Technical Report IMM-REP-1998-7, Technical University of Denmark (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, University of the Philippines-Diliman, Quezon City, Philippines

    Joseph M. Pasia

  2. Department of Business Administration, University of Vienna, Vienna, Austria

    Karl F. Doerner & Richard F. Hartl

  3. Salzburg Research Forschungsgesellschaft, Salzburg, Austria

    Karl F. Doerner

  4. Institute for Operations Research, ETH Zurich, Zurich, Switzerland

    Marc Reimann

Authors
  1. Joseph M. Pasia

    You can also search for this author inPubMed Google Scholar

  2. Karl F. Doerner

    You can also search for this author inPubMed Google Scholar

  3. Richard F. Hartl

    You can also search for this author inPubMed Google Scholar

  4. Marc Reimann

    You can also search for this author inPubMed Google Scholar

Editor information

Thomas Stützle Mauro Birattari Holger H. Hoos

Rights and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pasia, J.M., Doerner, K.F., Hartl, R.F., Reimann, M. (2007). Solving a Bi-objective Vehicle Routing Problem by Pareto-Ant Colony Optimization. In: Stützle, T., Birattari, M., H. Hoos, H. (eds) Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics. SLS 2007. Lecture Notes in Computer Science, vol 4638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74446-7_15

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp