Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

High Performance Implementation of an FPGA-Based Sequential DT-CNN

  • Conference paper

Abstract

In this paper an FPGA-based implementation of a sequential discrete time cellular neural network (DT-CNN) with 3×3 templates is described. The architecture is based on a single pipelined cell which is employed to emulate a CNN with larger number of neurons. This solution diminishes the use of hardware resources on the FPGA and allows the cell to process real time input data in a sequential mode. Highly efficient FPGA implementation has been achieved by manual design based on low level instantiation and placement of hardware primitives. The Intellectual Property Core offers an appropriate tradeoff between area and speed. Our architecture has been developed to assist designers implementing discrete CNN models with performance equivalent to hundreds or millions of neurons on low cost FPGA-based systems.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits and Systems 35 (1988)

    Google Scholar 

  2. Crounse, K.R., Chua, L.O.: Methods for image processing and pattern formation in Cellular Neural Networks: a tutorial. IEEE Transactions on Circuits and Systems I 42(10), 583–601 (1995)

    Article MathSciNet  Google Scholar 

  3. Balya, D., Rekeczky, C., Roska, T.: A realistic mammalian retinal model implemented on complex cell CNN universal machine. In: IEEE Intern. Symp. on Circuits and Systems, pp. 26–29 (2002)

    Google Scholar 

  4. Chua, L.O.: The CNN: a brain-like computer Neural Networks. In: IEEE Intern. Joint Conference, vol. 1, pp. 25–29 (2004)

    Google Scholar 

  5. Roska, T., Rodriguez-Vazquez, A.: Review of CMOS implementations of the CNN universal machine-type visual microprocessors. In: IEEE Int. Symp. on Circuits and Systems, ISCAS 2000, Geneva, Italia, vol. 2, pp. 120–123 (2000)

    Google Scholar 

  6. Linan, G., Rodriguez-Vazquez, A., Espejo, S., Dominguez-Castro, R.: ACE16K: a 128x128 focal plane analog processor with digital I/O. In: IEEE Int. Work. on Cellular Neural Networks and Their Applications, CNNA 2002, pp. 132–139 (2002)

    Google Scholar 

  7. Crounse, K.R., Chua, L.O.: The CNN Universal Machine is as universal as a Turing Machine. IEEE Transactions on Circuits and Systems I 43(4), 353–355 (1996)

    Article MathSciNet  Google Scholar 

  8. Hsin, C., Yung, H., Chang, C., Teh, L., Chun, C.: Image-processing algorithms realized by discrete-time cellular neural networks and their circuit implementations. Chaos Solitons and Fractals Journal 29(5), 1100–1108 (2006)

    Article  Google Scholar 

  9. Martínez, J.J., Toledo, F.J., Ferrández, J.M.: Architecture Implementation of a Discrete Cellular Neuron Model (DT-CNN) on FPGA. In: The Int. Society for Optical Engineering, Bioengineered and bioinspired systems II, pp. 332–340 (2005)

    Google Scholar 

  10. Nagy, Z., Szolgay, P.: Configurable multilayer CNN-UM emulator on FPGA. IEEE Trans. on Circuits and Systems I 50(6), 774–778 (2003)

    Article  Google Scholar 

  11. Xilinx Inc. Virtex-4 User Guide, data sheet(ug070) (2004),http://www.xilinx.com

Download references

Author information

Authors and Affiliations

  1. Dpto. Electrónica, Tecnología de Computadoras y Proyectos, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain

    J. Javier Martínez-Alvarez, F. Javier Garrigós-Guerrero, F. Javier Toledo-Moreo & J. Manuel Ferrández-Vicente

Authors
  1. J. Javier Martínez-Alvarez

    You can also search for this author inPubMed Google Scholar

  2. F. Javier Garrigós-Guerrero

    You can also search for this author inPubMed Google Scholar

  3. F. Javier Toledo-Moreo

    You can also search for this author inPubMed Google Scholar

  4. J. Manuel Ferrández-Vicente

    You can also search for this author inPubMed Google Scholar

Editor information

José Mira José R. Álvarez

Rights and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Martínez-Alvarez, J.J., Garrigós-Guerrero, F.J., Toledo-Moreo, F.J., Ferrández-Vicente, J.M. (2007). High Performance Implementation of an FPGA-Based Sequential DT-CNN. In: Mira, J., Álvarez, J.R. (eds) Nature Inspired Problem-Solving Methods in Knowledge Engineering. IWINAC 2007. Lecture Notes in Computer Science, vol 4528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73055-2_1

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp