Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Atanassov’s Intuitionistic Fuzzy Sets as a Classification Model

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 4529))

Included in the following conference series:

Abstract

In this paper we show that Atanassov’s Intuitionistic Fuzzy sets can be viewed as a classification model, that can be generalized in order to take into account more classes than the three classes considered by Atanassov’s (membership, non-membership and non-determinacy). This approach will imply, on one hand, to change the meaning of these classes, so each one will have a positive definition. On the other hand, this approach implies the possibility of a direct generalization for alternative logics and additional valuation states, being consistent with Atanassov’s focuss. From this approach we shall stress the absence of any structure within those three valuation states in Atanassov’s model. In particular, we consider this is the main cause of the dispute about Atanassov’s model: acknowledging that the nameintuitionistic is not appropriate, once we consider that a crisp direct graph is defined in the valuation space, formal differences with other three-state models will appear.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amo, A., Gómez, D., Montero, J., Biging, G.: Relevance and redundancy in fuzzy classification systems. Mathware and Soft Computing 8, 203–216 (2001)

    MathSciNet MATH  Google Scholar 

  2. Amo, A., Montero, J., Biging, G., Cutello, V.: Fuzzy classification systems. European Journal of Operational Research 156, 459–507 (2004)

    Article MathSciNet  Google Scholar 

  3. Amo, A., Montero, J., Molina, E.: Representation of consistent recursive rules. European Journal of Operational Research 130, 29–53 (2001)

    Article MathSciNet MATH  Google Scholar 

  4. Atanassov, K.T.: Intuitionistic fuzzy sets (in Bulgarian). In: Sgurev, V. (ed.) VII ITKR’s Session (deposed in Central Science and Technical Library, Bulgarian Academy of Sciences, 1697/84), Sofia (June 1983)

    Google Scholar 

  5. Atanassov, K.T.: Intuitionistic Fuzzy sets. Physica-Verlag, New York (1999)

    MATH  Google Scholar 

  6. Atanassov, K.T.: Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade’s paper, Terminological difficulties in fuzzy set theory - the case of intuitionistic fuzzy sets. Fuzzy Sets and Systems 156, 496–499 (2005)

    Article MathSciNet MATH  Google Scholar 

  7. Atanassov, K.T.: A personal view on intuitionistic fuzzy sets. In: Bustince, H., Herrera, F., Montero, J. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Studies in Fuzziness and Soft Computing, vol. 220, Springer, Berlin (2008)

    Chapter  Google Scholar 

  8. Calvo, T., Kolesarova, A., Komornikova, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators, pp. 3–104. Springer, Heidelberg (2002)

    Google Scholar 

  9. Cattaneo, G., Ciucci, D.: Basic intuitionistic principles in fuzzy set theories and its extensions (a terminological debate on Atanassov IFS). Fuzzy sets and Systems (in press)

    Google Scholar 

  10. Cintula, P.: Basics of a formal theory of fuzzy partitions. In: Proceedings EUSFLAT’05 Conference, Technical University of Catalonia, Barcelona, pp. 884–888 (2005)

    Google Scholar 

  11. Cutello, V., Montero, J.: Recursive connective rules. Int. J. Intelligent Systems 14, 3–20 (1999)

    Article MATH  Google Scholar 

  12. De Baets, B., Mesiar, R.: T-partitions. Fuzzy Sets and Systems 97, 211–223 (1998)

    Article MathSciNet MATH  Google Scholar 

  13. Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy sets theory. Fuzzy Sets and Systems 133, 227–235 (2003)

    Article MathSciNet MATH  Google Scholar 

  14. Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory - the case of intuitionistic fuzzy sets. Fuzzy Sets and Systems 156, 485–491 (2005)

    Article MathSciNet MATH  Google Scholar 

  15. Fortemps, P., Slowinski, R.: A graded quadrivalent logic for ordinal preference modelling: Loyola-like approach. Fuzzy Optimization and Decision making 1, 93–111 (2002)

    Article MathSciNet MATH  Google Scholar 

  16. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  17. Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Information Sciences 117, 84–110 (2007)

    Article MathSciNet  Google Scholar 

  18. Montero, J.: Comprehensive fuzziness. Fuzzy Sets and Systems 20, 79–86 (1986)

    Article MathSciNet MATH  Google Scholar 

  19. Montero, J.: Extensive fuzziness. Fuzzy Sets and Systems 21, 201–209 (1987)

    Article MathSciNet MATH  Google Scholar 

  20. Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets. Technical report (2006)

    Google Scholar 

  21. Ruspini, E.H.: A new approach to clustering. Information and Control 15, 22–32 (1969)

    Article MATH  Google Scholar 

  22. Sambuc, R.: FunctionΦ-flous, application a l’aide au diagnostic en pathologie thyroidienne. These de doctorat en Medicine, Marseille (1975)

    Google Scholar 

  23. Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. Journal of Symbolic Logic 49, 851–866 (1984)

    Article MathSciNet MATH  Google Scholar 

  24. Türksen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems 20, 191–210 (1986)

    Article MathSciNet  Google Scholar 

  25. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80, 111–120 (1996)

    Article MathSciNet MATH  Google Scholar 

  26. Yager, R.R.: On ordered averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)

    Article MathSciNet MATH  Google Scholar 

  27. Zadeh, L.A.: Fuzzy sets. Information and control 8, 338–353 (1965)

    Article MathSciNet MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Facultad de Matemáticas, Universidad Complutense, Madrid, Spain

    J. Montero

  2. Escuela de Estadística, Universidad Complutense, Madrid, Spain

    D. Gómez

  3. Automática y Computación, Universidad Pública de Navarra, Pamplona, Spain

    H. Bustince

Authors
  1. J. Montero

    You can also search for this author inPubMed Google Scholar

  2. D. Gómez

    You can also search for this author inPubMed Google Scholar

  3. H. Bustince

    You can also search for this author inPubMed Google Scholar

Editor information

Patricia Melin Oscar Castillo Luis T. Aguilar Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Montero, J., Gómez, D., Bustince, H. (2007). Atanassov’s Intuitionistic Fuzzy Sets as a Classification Model. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_7

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp