Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology

  • Conference paper

Abstract

Cardiac arrhythmias can develop complex electrophysiological patterns which complexify the planning and control of therapies, especially in the context of radio-frequency ablation. The development of electrophysiology models aims at testing different therapy strategies. However, current models are computationally expensive and often too complex to be adjusted with limited clinical data. In this paper, we propose a real-time method to simulate cardiac electrophysiology on triangular meshes. This model is based on a multi-front integration of the Fast Marching Method. This efficient approach opens new possibilities, including the ability to directly integrate modelling in the interventional room.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aliev, R., Panfilov, A.: A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  2. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1, 445–466 (1961)

    Article  Google Scholar 

  3. Colli Franzone, P., Guerri, L., Rovida, S.: Wavefront propagation in activation model of the anisotropic cardiac tissue: Asymptotic analysis and numerical simulations. J. Math. Biol. (1990)

    Google Scholar 

  4. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 177, 500–544 (1952)

    Google Scholar 

  5. Kao, C., Osher, S., Tsai, Y.: Fast sweeping methods for static hamilton-jacobi equations. SIAM J. Numer. Anal. 42 (2005)

    Google Scholar 

  6. Keener, J., Sneyd, J.: Mathematical Physiology. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  7. Kevorkian, J.: Partial differential equations: Analytical solution techniques. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  8. [ERROR while converting LaTeX/Unicode], E., Sermesant, M., Peyrat, J-M., Clatz, O., Delingette, H., Ayache, N.: A recursive anisotropic fast marching approach to reaction diffusion equation: Application to tumor growth modeling. In: Information Processing in Medical Imaging (IPMI’07). LNCS, Springer, Heidelberg (2007) (Accepted)

    Google Scholar 

  9. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circulation Research 68, 1501–1526 (1991)

    Google Scholar 

  10. Noble, D., Varghese, A., Kohl, P., Noble, P.: Improved guinea-pig ventricular cell model incorporating a diadic space,IKr andIKs, and length and tension dependent processes. Canadian Journal of Cardiology 14, 123–134 (1998)

    Google Scholar 

  11. Pollard, A., Hooke, N., Henriquez, C.: Cardiac propagation simulation. Critical Reviews in biomedical Engineering 20(3,4), 171–210 (1992)

    Google Scholar 

  12. Qian, J., Zhang, Y., Zhao, H.: A fast sweeping method for static convex hamilton-jacobi equations. UCLA Computational and Applied Mathematics Reports, 06-37 (2006)

    Google Scholar 

  13. Rhode, K., Sermesant, M., Brogan, D., Hegde, S., Hipwell, J., Lambiase, P., Rosenthal, E., Bucknall, C., Qureshi, S., Gill, J., Razavi, R., Hill, D.: A system for real-time XMR guided cardiovascular intervention. IEEE Transactions on Medical Imaging 24(11), 1428–1440 (2005)

    Article  Google Scholar 

  14. Sermesant, M., Coudière, Y., Moreau-Villéger, V., Rhode, K.S., Hill, D.L.G, Ravazi, R.: A fast-marching approach to cardiac electrophysiology simulation for XMR interventional imaging. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 607–615. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Sethian, J., Vladimirsky, A.: Ordered upwind methods for static hamilton-jacobi equations: theory and algorithms. SIAM J. Numer. Anal. 41 (2003)

    Google Scholar 

  16. Sethian, J.A.: Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. INRIA Sophia Antipolis, Asclepios Team, France

    Maxime Sermesant, Ender Konukog̃lu, Hervé Delingette & Nicholas Ayache

  2. King’s College London, Division of Imaging Sciences, UK

    Maxime Sermesant, Kawal S. Rhode & Reza Razavi

  3. University College London, Centre for Medical Image Computing, UK

    Phani Chinchapatnam

  4. Nantes University, Jean Leray Mathematics Laboratory, France

    Yves Coudière

Authors
  1. Maxime Sermesant

    You can also search for this author inPubMed Google Scholar

  2. Ender Konukog̃lu

    You can also search for this author inPubMed Google Scholar

  3. Hervé Delingette

    You can also search for this author inPubMed Google Scholar

  4. Yves Coudière

    You can also search for this author inPubMed Google Scholar

  5. Phani Chinchapatnam

    You can also search for this author inPubMed Google Scholar

  6. Kawal S. Rhode

    You can also search for this author inPubMed Google Scholar

  7. Reza Razavi

    You can also search for this author inPubMed Google Scholar

  8. Nicholas Ayache

    You can also search for this author inPubMed Google Scholar

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Sermesant, M.et al. (2007). An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_17

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp