Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Long-Term Security and Universal Composability

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 4392))

Included in the following conference series:

  • 2562Accesses

Abstract

Algorithmic progress and future technology threaten today’s cryptographic protocols. Long-term secure protocols should not even in future reveal more information to a—then possibly unlimited—adversary.

In this work we initiate the study of protocols which are long-term secureand universally composable. We show that the usual set-up assumptions used for UC protocols (e.g., a common reference string) are not sufficient to achieve long-term secureand composable protocols for commitments or general zero knowledge arguments. Surprisingly, nontrivial zero knowledge protocols are possible based on a coin tossing functionality: We give a long-term secure composable zero knowledge protocol proving the knowledge of the factorisation of a Blum integer.

Furthermore we give practical alternatives (e.g., signature cards) to the usual setup-assumptions and show that these allow to implement the important primitives commitment and zero-knowledge argument.

Similar content being viewed by others

Keywords

References

  1. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: 45th Symposium on Foundations of Computer Science, Proceedings of FOCS 2004, Rome, Italy, 17-19 October 2004, pp. 186–195. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  2. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. JCSS 37, 156–189 (1988)

    MATH  Google Scholar 

  3. Brassard, G., Crépeau, C., Mayers, D., Salvail, L.: Defeating classical bit commitments with a quantum computer. Los Alamos preprint archive quant-ph/9806031 (May 1999)

    Google Scholar 

  4. Cachin, C., Crépeau, C., Marcil, J.: Oblivious transfer with a memory-bounded receiver. In: 34th Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2002, pp. 493–502. ACM Press, New York (2002)

    Google Scholar 

  5. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306. Springer, Heidelberg (1997)

    Google Scholar 

  6. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2001, pp. 136–145. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  7. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. IACR ePrint Archive (December 2005) Full and revised version of Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2001, pp. 136–145. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  8. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation (Extended abstract). In: 34th Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2002, pp. 494–503. ACM Press, New York (2002)

    Chapter  Google Scholar 

  11. Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Dziembowski, S., Maurer, U.: On generating the initial key in the bounded-storage model. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 126–137. Springer, Heidelberg (2004)

    Google Scholar 

  13. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs under general assumptions. SIAM Journal on Computing 29(1), 1–28 (1999)

    Article MathSciNet MATH  Google Scholar 

  14. Goldreich, O.: Foundations of Cryptography – Volume 1 (Basic Tools). Cambridge University Press, Cambridge (August 2001)

    Google Scholar 

  15. Goldreich, O.: Foundations of Cryptography – Volume 2 (Basic Applications). Cambridge University Press, Cambridge (May 2004)

    Google Scholar 

  16. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(3), 690–728 (1991), doi:10.1145/116825.116852

    Article MathSciNet  Google Scholar 

  17. Hofheinz, D., Müller-Quade, J., Unruh, D.: Universally composable zero-knowledge arguments and commitments from signature cards. In: Proceedings of the 5th Central European Conference on Cryptology, MoraviaCrypt ’05 (2005)

    Google Scholar 

  18. Lindell, Y.: General composition and universal composability in secure multi-party computation. In: 44th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2003, pp. 394–403. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  19. Müller-Quade, J., Unruh, D.: Long-term security and universal composability (2006), Full version of this paper, IACR ePrint 2006/422

    Google Scholar 

  20. Müller-Quade, J.: Temporary assumptions—quantum and classical (abstract). In: The 2005 IEEE Information Theory Workshop On Theory and Practice in Information-Theoretic Security, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  21. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge arguments for NP using any one-way permutation. Journal of Cryptology 11(2), 87–108 (1998)

    Article MathSciNet MATH  Google Scholar 

  22. Rabin, M.O.: Hyper-encryption by virtual satellite. Science Center Research Lecture Series (December 2003)

    Google Scholar 

  23. Gesetz über Rahmenbedingungen für elektronische Signaturen. Bundesgesetzblatt I 2001, 876 (May 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. IAKS, Universität Karlsruhe (TH), Germany

    Jörn Müller-Quade

  2. Saarland University, Saarbrücken, Germany

    Dominique Unruh

Authors
  1. Jörn Müller-Quade

    You can also search for this author inPubMed Google Scholar

  2. Dominique Unruh

    You can also search for this author inPubMed Google Scholar

Editor information

Salil P. Vadhan

Rights and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Müller-Quade, J., Unruh, D. (2007). Long-Term Security and Universal Composability. In: Vadhan, S.P. (eds) Theory of Cryptography. TCC 2007. Lecture Notes in Computer Science, vol 4392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70936-7_3

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp