Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Multichannel Blind Deconvolution of Non-minimum Phase System Using Cascade Structure

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

Abstract

Filter decomposition approach has been presented for multichannel blind deconvolution of non-minimum phase systems [12]. In this paper, we present a flexible cascade structure by decomposing the demixing filter into a casual finite impulse response (FIR) filter and an anti-causal scalar FIR filter. Subsequently, we develop the natural gradient algorithms for both filters. Computer simulations show good learning performance of this method.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari, S.: Natural gradient works efficiently in learning. Neural Computation 10(2), 251–276 (1998)

    Article MathSciNet  Google Scholar 

  2. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 8(NIPS 1995), pp. 757–763. The MIT Press, Cambridge (1996)

    Google Scholar 

  3. Amari, S., Douglas, S., Cichocki, A., Yang, H.: Novel on-line algorithms for blind deconvolution using natural gradient approach. In: Proc. 11th IFAC Symposium on System Identification, SYSID 1997, Kitakyushu, Japan, July 1997, pp. 1057–1062 (1997)

    Google Scholar 

  4. Amari, S., Chen, T.P., Cichocki, A.: Stability analysis of learning algorithms for blind source separation. Neural Networks 10(8), 1345–1351 (1997)

    Article  Google Scholar 

  5. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  6. Benveniste, A., Goursat, M., Ruget, G.: Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communication. IEEE Trans. Automatic Control (25), 385–399 (1980)

    Google Scholar 

  7. Godard, D.N.: Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Comm. (28), 1867–1875 (1980)

    Google Scholar 

  8. Labat, J., Macchi, O., Laot, C.: Adaptive decision feedback equalization: Can you skip the training period. IEEE Trans. on communication (46), 921–930 (1998)

    Google Scholar 

  9. Tong, L., Xu, G., Kailath, T.: Blind identification and equalization base on second-order statistics: A time domain approach. IEEE Trans. Information Theory (40), 340–349 (1994)

    Google Scholar 

  10. Tugnait, J.K., Huang, B.: Multistep linear predictors-based blind identification and equalization of multiple-input multiple-output channels. IEEE Trans. on Signal Processing (48), 26–28 (2000)

    Google Scholar 

  11. Waheed, K., Salam, F.M.: Cascaded structures for blind source recovery. In: 45th IEEE int’l Midwest Symposium on Circuits and Systems, Tulsa, Oklahoma, vol. 3, pp. 656–659 (2002)

    Google Scholar 

  12. Zhang, L.Q., Amari, S., Cichocki, A.: Multichannel blind deconvolution of non-minimum phase systems using filter decomposition. IEEE Trans. Signal Processing (2004) (in press)

    Google Scholar 

  13. Zhang, L.Q., Cichocki, A., Amari, S.: Multichannel blind deconvolution of nonminimum phase systems using information backpropagation. In: Proceedings of ICONIP 1999, Perth, Australia, November 16-20, pp. 210–216 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science and Engineering, Shanghai Jiaotong University Shanghai, China

    Bin Xia & Liqing Zhang

Authors
  1. Bin Xia

    You can also search for this author inPubMed Google Scholar

  2. Liqing Zhang

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Indian Statistical Institute, Electronics and Communication Sciences Unit, Kolkata, India

    Nikhil Ranjan Pal

  2. School of Computer and Information Sciences, Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland University of Technology, Private Bag 92006, Auckland, New Zealand

    Nik Kasabov

  3. Department of Instrumentation and Electronics Engineering, Jadavpur University, Salt-lake Campus, 700098, Calcutta, India

    Rajani K. Mudi

  4. Indian Statistical Institute, 203 B. T. Road, 700 108, Calcutta,  

    Srimanta Pal

  5. Indian Statistical Institute, Computer Vision and Pattern Recognition Unit, 700108, Kolkata, India

    Swapan Kumar Parui

Rights and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xia, B., Zhang, L. (2004). Multichannel Blind Deconvolution of Non-minimum Phase System Using Cascade Structure. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_184

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp