Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Evolution Strategies Based Particle Filters for Nonlinear State Estimation

  • Conference paper

Abstract

There has been significant recent interest of particle filters for nonlinear state estimation. Particle filters evaluate a posterior probability distribution of the state variable based on observations in Monte Carlo simulation using so-called importance sampling. However, degeneracy phenomena in the importance weights deteriorate the filter performance. By recognizing the similarities and the difference of the processes between the particle filters and Evolution Strategies, a new filter, Evolution Strategies Based Particle Filter, is proposed to circumvent this difficulty and to improve the performance. The applicability of the proposed idea is illustrated by numerical studies.

This work is partially supported by the Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (C)(2)14550447.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, Englewood Cliffs (1979)

    MATH  Google Scholar 

  2. Sorenson, H.: Kalman Filtering: Theory and Application. IEEE Press, Los Alamitos (1985)

    Google Scholar 

  3. Jazwinski, A.H.: Stochastic Process and Filtering Theory. Academic Press, London (1970)

    Google Scholar 

  4. Goodwin, G.C., Agüero, J.C.: State and parameter estimation for linear and nonlinear systems. In: Proc. of the 7th International Conf. on Control, Automation, Robotics and Vision (2002)

    Google Scholar 

  5. Kitagawa, G.: Non-Gaussian state-space modeling of nonstationary time series. J. of American Statistical Association 82, 1032–1063 (1987)

    Article MATH MathSciNet  Google Scholar 

  6. Doucet, A.: On sequential simulation-based methods for Bayesian filtering. Technical Report CUED/F-INFENG/TR 310, Department of Engineering, Cambridge University (1998)

    Google Scholar 

  7. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans. on Signal Processing SP-50(2), 174–188 (2002)

    Article  Google Scholar 

  8. Schwefel, H.-P.: Evolution and Optimum Seeking. J. Wiley, Chichester (1995)

    Google Scholar 

  9. Bäck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1(1), 1–23 (1993)

    Article  Google Scholar 

  10. Fogel, D.B.: Evolutionary Computation. IEEE Press, Los Alamitos (1995)

    Google Scholar 

  11. Bäck, T.: Evolutionary Computation. Oxford Press (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Information and Physical Sciences, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 565-0871, Japan

    Katsuji Uosaki, Yuuya Kimura & Toshiharu Hatanaka

Authors
  1. Katsuji Uosaki
  2. Yuuya Kimura
  3. Toshiharu Hatanaka

Editor information

Editors and Affiliations

  1. KES International, 2nd Floor, 145-157 St John Street, EC1V 4PY, London, United Kingdom

    Mircea Gh. Negoita

  2. Centre for SMART systems Engineering Research Centre, University of Brighton, BN2 4GJ, Moulsecoomb, Brighton, UK

    Robert J. Howlett

  3. School of Electrical and Information Engineering, Knowledge Based Intelligent Engineering Systems Centre, University of South Australia, 5095, Mawson Lakes, SA, Australia

    Lakhmi C. Jain

Rights and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uosaki, K., Kimura, Y., Hatanaka, T. (2004). Evolution Strategies Based Particle Filters for Nonlinear State Estimation. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30132-5_161

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp