Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Soft-LOST: EM on a Mixture of Oriented Lines

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 3195))

  • 1511Accesses

Abstract

Robust clustering of data into overlapping linear subspaces is a common problem. Here we consider one-dimensional subspaces that cross the origin. This problem arises in blind source separation, where the subspaces correspond directly to columns of a mixing matrix. We present an algorithm that identifies these subspaces using an EM procedure, where the E-step calculates posterior probabilities assigning data points to lines and M-step repositions the lines to match the points assigned to them. This method, combined with a transformation into a sparse domain and anL1-norm optimisation, constitutes a blind source separation algorithm for the under-determined case.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Karhunen, J., Hyvärinen, A., Oja, E.: Independent Component Analysis. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  2. Dempster, P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1976)

    MathSciNet MATH  Google Scholar 

  3. Rickard, S.T., Dietrich, F.: DOA estimation of many W-disjoint orthogonal sources from two mixtures using DUET. In: Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing (SSAP 2000), Pocono Manor, PA, August 2000, pp. 311–314 (2000)

    Google Scholar 

  4. Sam, T.: Roweis. One microphone source separation. In: Advances in Neural Information Processing Systems 13, pp. 793–799. MIT Press, Cambridge (2001)

    Google Scholar 

  5. Lee, T.-W., Lewicki, M.S., Girolami, M., Sejnowski, T.J.: Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters 6(4), 87–90 (1999)

    Article  Google Scholar 

  6. Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition in a signal dictionary. Neural Computation 13(4), 863–882 (2001)

    Article  Google Scholar 

  7. Kearns, M., Mansour, Y., Ng, A.Y.: An information-theoretic analysis of hard and soft assignment methods for clustering. In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pp. 282–293 (1997)

    Google Scholar 

  8. O’Grady, P., Pearlmutter, B.: Hard-LOST: Modified k-means for oriented lines. In: Proceedings of the Irish Signals and Systems Conference (2004)

    Google Scholar 

  9. Paschen, E., Osgood, C., Mosby, R.P. (eds.): Poetry Speaks: Hear Great Poets Read Their Work from Tennyson to Plath. Sourcebooks Incorporated (2001) ISBN 1570717206

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Hamilton Institute, National University of Ireland, Maynooth, Co. Kildare, Ireland

    Paul D. O’Grady & Barak A. Pearlmutter

Authors
  1. Paul D. O’Grady

    You can also search for this author inPubMed Google Scholar

  2. Barak A. Pearlmutter

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. of Architecture and Computer Technology, University of Granada, Spain

    Carlos G. Puntonet  & Alberto Prieto  & 

Rights and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

O’Grady, P.D., Pearlmutter, B.A. (2004). Soft-LOST: EM on a Mixture of Oriented Lines. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_55

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp