Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 3017))
Included in the following conference series:
2536Accesses
Abstract
Recent research shows that the class of Rotation Symmetric Boolean Functions (RSBFs), i.e., the class of Boolean functions that are invariant under circular translation of indices, is potentially rich in functions of cryptographic significance. Here we present new results regarding the Rotation Symmetric (rots) correlation immune (CI) and bent functions. We present important data structures for efficient search strategy of rots bent and CI functions. Further, we prove the nonexistence of homogeneous rots bent functions of degree ≥ 3 on a single cycle.
Chapter PDF
Similar content being viewed by others
Keywords
References
Clark, J., Jacob, J., Stepney, S., Maitra, S., Millan, W.: Evolving Boolean Functions Satisfying Multiple Criteria. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 246–259. Springer, Heidelberg (2002)
Clark, J., Jacob, J., Maitra, S., Stanica, P.: Almost Boolean Functions: The Design of Boolean Functions by Spectral Inversion. In: The proceedings, CEC 2003, the 2003 Congress on Evolutionary Computation, Canberra, Australia, December 8–12, vol. 3. IEEE Press, Los Alamitos (2003)
Cusick, T.W., Stănică, P.: Fast Evaluation, Weights and Nonlinearity of Rotation-Symmetric Functions. Discrete Mathematics 258(1-3), 289–301 (2002)
Filiol, E., Fontaine, C.: Highly nonlinear balanced Boolean functions with a good correlation-immunity. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 475–488. Springer, Heidelberg (1998)
Guo-Zhen, X., Massey, J.: A spectral characterization of correlation immune combining functions. IEEE Transactions on Information Theory 34(3), 569–571 (1988)
Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (1994)
Maitra, S., Pasalic, E.: Further constructions of resilient Boolean functions with very high nonlinearity. IEEE Transactions on Information Theory 48(7), 1825–1834 (2002)
Maitra, S., Sarkar, P.: Cryptographically significant Boolean functions with five-valued walsh spectra. Theoretical Computer Science 276(1–2), 133–146 (2002)
Maity, S., Johansson, T.: Construction of Cryptographically Important Boolean Functions. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 234–245. Springer, Heidelberg (2002)
Pasalic, E., Maitra, S., Johansson, T., Sarkar, P.: New constructions of resilient and correlation immune Boolean functions achieving upper bound on nonlinearity. In: Workshop on Coding and Cryptography - WCC 2001, Paris, January 8–12. Electronic Notes in Discrete Mathematics, vol. 6. Elsevier Science, Amsterdam (2001)
Pieprzyk, J., Qu, C.X.: Fast Hashing and Rotation-Symmetric Functions. Journal of Universal Computer Science 5(1), 20–31 (1999)
Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation characteristics of Boolean functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)
Sarkar, P., Maitra, S.: Construction of nonlinear Boolean functions with important cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506. Springer, Heidelberg (2000)
Sarkar, P., Maitra, S.: Nonlinearity bounds and constuction of resilient Boolean functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 515–532. Springer, Heidelberg (2000)
Stănică, P., Maitra, S.: Rotation Symmetric Boolean Functions – Count and Cryptographic Properties. In: R.C. Bose Centenary Symposium on Discrete Mathematics and Applications, December 2002. Electronic Notes in Discrete Mathematics, vol. 15. Elsevier, Amsterdam (2002)
Stănică, P., Maitra, S.: A constructive count of Rotation Symmetric functions. Information Processing Letters 88, 299–304 (2003)
Xia, T., Seberry, J., Pieprzyk, J., Charnes, C.: Homogeneous bent functions of degree n in 2n variables do not exist for n > 3. Discrete Mathematics (to appear)
Zhang, X.-M., Zheng, Y.: GAC – the criterion for global avalanche characteristics of cryptographic functions. Journal of Universal Computer Science 1(5), 316–333 (1995)
Author information
Authors and Affiliations
Mathematics Department, Auburn University Montgomery, Montgomery, AL, 36124-4023, USA
Pantelimon Stănică
Applied Statistics Unit, Indian Statistical Institute, 203, B T Road, Kolkata, 700 108, INDIA
Subhamoy Maitra
Department of Computer Science, University of York, York, YO10 3EE, England
John A. Clark
- Pantelimon Stănică
You can also search for this author inPubMed Google Scholar
- Subhamoy Maitra
You can also search for this author inPubMed Google Scholar
- John A. Clark
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, 700 108, Kolkata, India
Bimal Roy
FHNW, Windisch, Switzerland
Willi Meier
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stănică, P., Maitra, S., Clark, J.A. (2004). Results on Rotation Symmetric Bent and Correlation Immune Boolean Functions. In: Roy, B., Meier, W. (eds) Fast Software Encryption. FSE 2004. Lecture Notes in Computer Science, vol 3017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25937-4_11
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-22171-5
Online ISBN:978-3-540-25937-4
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative