Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 3024))
Included in the following conference series:
4423Accesses
Abstract
For shapes represented as closed planar contours, we introduce a class of functionals that are invariant with respect to the Euclidean and similarity group, obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential cousins, such as locality of computation (which allows matching under occlusions) and uniqueness of representation (in the limit), they are not as sensitive to noise in the data. We exploit the integral invariants to define a unique signature, from which the original shape can be reconstructed uniquely up to the symmetry group, and a notion of scale-space that allows analysis at multiple levels of resolution. The invariant signature can be used as a basis to define various notions of distance between shapes, and we illustrate the potential of the integral invariant representation for shape matching on real and synthetic data.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Alferez, R., Wang, Y.F.: Geometric and illumination invariants for object recognition. PAMI 21(6), 505–536 (1999)
Arbter, K., Snyder, W.E., Burkhardt, H., Hirzinger, G.: Applications of affine invariant fourier descriptors to recognition of 3-d objects. PAMI 12(7), 640–646 (1990)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI 24(4), 509–522 (2002)
Bengtsson, A., Eklundh, J.-O.: Shape representation by multiscale contour approximation. PAMI 13(1), 85–93 (1991)
Boutin, M.: Numerically invariant signature curves. IJCV 40(3), 235–248 (2000)
Brandt, R.D., Lin, F.: Representations that uniquely characterize images modulo translation, rotation and scaling. PRL 17, 1001–1015 (1996)
Bruckstein, A., Katzir, N., Lindenbaum, M., Porat, M.: Similarity invariant signatures for partially occluded planar shapes. IJCV 7(3), 271–285 (1992)
Bruckstein, M., Holt, R.J., Netravali, A.N., Richardson, T.J.: Invariant signatures for planar shape recognition under partial occlusion. CVGIP:IU 58(1), 49–65 (1993)
Bruckstein, M., Rivlin, E., Weiss, I.: Scale-space semi-local invariants. IVC 15(5), 335–344 (1997)
Calabi, E., Olver, P., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. IJCV 26, 107–135 (1998)
Chetverikov, D., Khenokh, Y.: Matching for shape defect detection. In: Solina, F., Leonardis, A. (eds.) CAIP 1999. LNCS, vol. 1689(2), pp. 367–374. Springer, Heidelberg (1999)
Cohignac, T., Lopez, C., Morel, J.M.: Integral and local affine invariant parameter and applicatioin to shape recognition. ICPR 1, 164–168 (1994)
Cole, J.B., Murase, H., Naito, S.: A lie group theoretical approach to the invariance problem in feature extraction and object recognition. PRL 12, 519–523 (1991)
Dickson, L.E.: Algebraic Invariants. John-Weiley & Sons, West Sussex (1914)
Dieudonne, J., Carrell, J.: Invariant Theory: Old and New. Academic Press, London (1970)
Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pat. Rec. 26(1), 167–174 (1993)
Forsyth, D.A., Mundy, J.L., Zisserman, A.P., Coelho, C., Heller, A., Othwell, C.A.: Invariant descriptors for 3-d object recognition and pose. PAMI 13(10), 971–991 (1991)
Forsyth, D.A., Mundy, J.L., Zisserman, A., Brown, C.M.: Projectively invariant representations using implicit algebraic curves. IVC 9(2), 130–136 (1991)
Van Gool, L., Moons, T., Pauwels, E., Oosterlinck, A.: Semi-differential invariants. In: Mundy, J., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 193–214. MIT, Cambridge (1992)
Van Gool, L., Moons, T., Ungureanu, D.: Affine/photometric invariants for planar intensity patterns. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 642–651. Springer, Heidelberg (1996)
Grace, J.H., Young, A.: The Algebra of Invariants, Cambridge (1903)
Hann, C.E., Hickman, M.S.: Projective curvature and integral invariants. IJCV 40(3), 235–248 (2000)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. on IT 8, 179–187 (1961)
Kanatani, K.: Group Theoretical Methods in Image Understanding. Springer, Heidelberg (1990)
Lane, E.P.: Projective Differential Geometry of Curves and Surfaces. University of Chicago Press, Chicago (1932)
Lasenby, J., Bayro-Corrochano, E., Lasenby, A.N., Sommer, G.: A new framework for the formation of invariants and multiple-view constraints in computer vision. ICIP (1996)
Lei, G.: Recognition of planar objects in 3-d space from single perspective views using cross ratio. Robot. and Automat. 6(4), 432–437 (1990)
Lenz, R.: Group Theoretical Methods in Image Processing. LNCS, vol. 413. Springer, Heidelberg (1990)
Li, S.Z.: Shape matching based on invariants. In: Omidvar, O.M. (ed.) Progress in Neural Networks: Shape Recognition, vol. 6, pp. 203–228. Intellect, Bristol (1999)
Liao, S., Pawlak, M.: On image analysis by moments. PAMI 18(3), 254–266 (1996)
Miyatake, T., Matsuyama, T., Nagao, M.: Affine transform invariant curve recognition using fourier descriptors. Inform. Processing Soc. Japan 24(1), 64–71 (1983)
Mokhtarian, F., Mackworth, A.K.: A theory of multi-scale, curvature-based shape representation for planar curves. PAMI 14(8), 789–805 (1992)
Mumford, D., Fogarty, J., Kirwan, F.C.: Geometric invariant theory, 3rd edn. Springer, Berlin (1994)
Mumford, D., Latto, A., Shah, J.: The representation of shape. In: IEEE Workshop on Comp. Vis., pp. 183–191 (1984)
Mundy, J.L., Zisserman, A. (eds.): Geometric Invariance in Computer Vision. MIT, Cambridge (1992)
Nielsen, L., Saprr, G.: Projective area-invariants as an extension of the crossratio. CVGIP 54(1), 145–159 (1991)
Olver, P.J.: Equivalence, Invariants and Symmetry, Cambridge (1995)
Pajdla, T., Van Gool, L.: Matching of 3-d curves using semi-differential invariants. In: ICCV, pp. 390–395 (1995)
Reiss, T.H.: Recognizing Planar Objects Using Invariant Image Features. LNCS, vol. 676. Springer, Heidelberg (1993)
Rothwell, C., Zisserman, A., Forsyth, D., Mundy, J.: Canonical frames for planar object recognition. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 757–772. Springer, Heidelberg (1992)
Rothwell, C., Zisserman, A., Forsyth, D., Mundy, J.: Planar object recognition using projective shape representation. IJCV 16, 57–99 (1995)
Sapiro, G., Tannenbaum, A.: Affine invariant scale space. IJCV 11(1), 25–44 (1993)
Sapiro, G., Tannenbaum, A.: Area and length preserving geometric invariant scale-spaces. PAMI 17(1), 67–72 (1995)
Sato, J., Cipolla, R.: Affine integral invariants for extracting symmetry axes. IVC 15(8), 627–635 (1997)
Shashua, A., Navab, N.: Relative affine structure: Canonical model for 3d from 2d geometry and applications. PAMI 18(9), 873–883 (1996)
Springer, C.E.: Geometry and Analysis of Projective Spaces. Freeman, San Francisco (1964)
Tieng, Q.M., Boles, W.W.: Recognition of 2d object contours using the wavelet transform zero-crossing representation. PAMI 19(8), 910–916 (1997)
Verestoy, J., Chetverikov, D.: Shape detect detection in ferrite cores. Machine. Graphics and Vision 6(2), 225–236 (1997)
Weiss, I.: Noise resistant invariants of curves. PAMI 15(9), 943–948 (1993)
Witkin, P.: Scale-space filtering. In: Int. Joint. Conf. AI, pp. 1019–1021 (1983)
Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. Trans. Comp. 21, 269–281 (1972)
Zisserman, A., Forsyth, D.A., Mundy, J.L., Rothwell, C.A., Liu, J.S.: 3D object recognition using invariance. Art. Int. 78, 239–288 (1995)
Author information
Authors and Affiliations
University of California at Los Angeles, Los Angeles, CA, 90024, USA
Siddharth Manay & Stefano Soatto
University of Oxford, Oxford, OX1 3BW, UK
Byung-Woo Hong
Georgia Institute of Technology, Atlanta, GA, 30332, USA
Anthony J. Yezzi
- Siddharth Manay
You can also search for this author inPubMed Google Scholar
- Byung-Woo Hong
You can also search for this author inPubMed Google Scholar
- Anthony J. Yezzi
You can also search for this author inPubMed Google Scholar
- Stefano Soatto
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Prague 6, Czech Republic
Tomás Pajdla
Center for Machine Perception, Dept. of Cybernetics, Faculty of Elec. Eng., Czech Technical University in Prague, Karlovo nám. 13, 121 35, Prague, Czech Rep.
Jiří Matas
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Manay, S., Hong, BW., Yezzi, A.J., Soatto, S. (2004). Integral Invariant Signatures. In: Pajdla, T., Matas, J. (eds) Computer Vision - ECCV 2004. ECCV 2004. Lecture Notes in Computer Science, vol 3024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24673-2_8
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-21981-1
Online ISBN:978-3-540-24673-2
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative