Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Integral Invariant Signatures

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 3024))

Included in the following conference series:

Abstract

For shapes represented as closed planar contours, we introduce a class of functionals that are invariant with respect to the Euclidean and similarity group, obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential cousins, such as locality of computation (which allows matching under occlusions) and uniqueness of representation (in the limit), they are not as sensitive to noise in the data. We exploit the integral invariants to define a unique signature, from which the original shape can be reconstructed uniquely up to the symmetry group, and a notion of scale-space that allows analysis at multiple levels of resolution. The invariant signature can be used as a basis to define various notions of distance between shapes, and we illustrate the potential of the integral invariant representation for shape matching on real and synthetic data.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alferez, R., Wang, Y.F.: Geometric and illumination invariants for object recognition. PAMI 21(6), 505–536 (1999)

    Google Scholar 

  2. Arbter, K., Snyder, W.E., Burkhardt, H., Hirzinger, G.: Applications of affine invariant fourier descriptors to recognition of 3-d objects. PAMI 12(7), 640–646 (1990)

    Google Scholar 

  3. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI 24(4), 509–522 (2002)

    Google Scholar 

  4. Bengtsson, A., Eklundh, J.-O.: Shape representation by multiscale contour approximation. PAMI 13(1), 85–93 (1991)

    Google Scholar 

  5. Boutin, M.: Numerically invariant signature curves. IJCV 40(3), 235–248 (2000)

    Article MATH  Google Scholar 

  6. Brandt, R.D., Lin, F.: Representations that uniquely characterize images modulo translation, rotation and scaling. PRL 17, 1001–1015 (1996)

    Google Scholar 

  7. Bruckstein, A., Katzir, N., Lindenbaum, M., Porat, M.: Similarity invariant signatures for partially occluded planar shapes. IJCV 7(3), 271–285 (1992)

    Article  Google Scholar 

  8. Bruckstein, M., Holt, R.J., Netravali, A.N., Richardson, T.J.: Invariant signatures for planar shape recognition under partial occlusion. CVGIP:IU 58(1), 49–65 (1993)

    Article  Google Scholar 

  9. Bruckstein, M., Rivlin, E., Weiss, I.: Scale-space semi-local invariants. IVC 15(5), 335–344 (1997)

    Google Scholar 

  10. Calabi, E., Olver, P., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. IJCV 26, 107–135 (1998)

    Article  Google Scholar 

  11. Chetverikov, D., Khenokh, Y.: Matching for shape defect detection. In: Solina, F., Leonardis, A. (eds.) CAIP 1999. LNCS, vol. 1689(2), pp. 367–374. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Cohignac, T., Lopez, C., Morel, J.M.: Integral and local affine invariant parameter and applicatioin to shape recognition. ICPR 1, 164–168 (1994)

    Google Scholar 

  13. Cole, J.B., Murase, H., Naito, S.: A lie group theoretical approach to the invariance problem in feature extraction and object recognition. PRL 12, 519–523 (1991)

    Google Scholar 

  14. Dickson, L.E.: Algebraic Invariants. John-Weiley & Sons, West Sussex (1914)

    MATH  Google Scholar 

  15. Dieudonne, J., Carrell, J.: Invariant Theory: Old and New. Academic Press, London (1970)

    Google Scholar 

  16. Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pat. Rec. 26(1), 167–174 (1993)

    Article MathSciNet  Google Scholar 

  17. Forsyth, D.A., Mundy, J.L., Zisserman, A.P., Coelho, C., Heller, A., Othwell, C.A.: Invariant descriptors for 3-d object recognition and pose. PAMI 13(10), 971–991 (1991)

    Google Scholar 

  18. Forsyth, D.A., Mundy, J.L., Zisserman, A., Brown, C.M.: Projectively invariant representations using implicit algebraic curves. IVC 9(2), 130–136 (1991)

    Google Scholar 

  19. Van Gool, L., Moons, T., Pauwels, E., Oosterlinck, A.: Semi-differential invariants. In: Mundy, J., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 193–214. MIT, Cambridge (1992)

    Google Scholar 

  20. Van Gool, L., Moons, T., Ungureanu, D.: Affine/photometric invariants for planar intensity patterns. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 642–651. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  21. Grace, J.H., Young, A.: The Algebra of Invariants, Cambridge (1903)

    Google Scholar 

  22. Hann, C.E., Hickman, M.S.: Projective curvature and integral invariants. IJCV 40(3), 235–248 (2000)

    Article  Google Scholar 

  23. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. on IT 8, 179–187 (1961)

    Google Scholar 

  24. Kanatani, K.: Group Theoretical Methods in Image Understanding. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  25. Lane, E.P.: Projective Differential Geometry of Curves and Surfaces. University of Chicago Press, Chicago (1932)

    Google Scholar 

  26. Lasenby, J., Bayro-Corrochano, E., Lasenby, A.N., Sommer, G.: A new framework for the formation of invariants and multiple-view constraints in computer vision. ICIP (1996)

    Google Scholar 

  27. Lei, G.: Recognition of planar objects in 3-d space from single perspective views using cross ratio. Robot. and Automat. 6(4), 432–437 (1990)

    Article  Google Scholar 

  28. Lenz, R.: Group Theoretical Methods in Image Processing. LNCS, vol. 413. Springer, Heidelberg (1990)

    Google Scholar 

  29. Li, S.Z.: Shape matching based on invariants. In: Omidvar, O.M. (ed.) Progress in Neural Networks: Shape Recognition, vol. 6, pp. 203–228. Intellect, Bristol (1999)

    Google Scholar 

  30. Liao, S., Pawlak, M.: On image analysis by moments. PAMI 18(3), 254–266 (1996)

    Google Scholar 

  31. Miyatake, T., Matsuyama, T., Nagao, M.: Affine transform invariant curve recognition using fourier descriptors. Inform. Processing Soc. Japan 24(1), 64–71 (1983)

    Google Scholar 

  32. Mokhtarian, F., Mackworth, A.K.: A theory of multi-scale, curvature-based shape representation for planar curves. PAMI 14(8), 789–805 (1992)

    Google Scholar 

  33. Mumford, D., Fogarty, J., Kirwan, F.C.: Geometric invariant theory, 3rd edn. Springer, Berlin (1994)

    Google Scholar 

  34. Mumford, D., Latto, A., Shah, J.: The representation of shape. In: IEEE Workshop on Comp. Vis., pp. 183–191 (1984)

    Google Scholar 

  35. Mundy, J.L., Zisserman, A. (eds.): Geometric Invariance in Computer Vision. MIT, Cambridge (1992)

    Google Scholar 

  36. Nielsen, L., Saprr, G.: Projective area-invariants as an extension of the crossratio. CVGIP 54(1), 145–159 (1991)

    Article MATH  Google Scholar 

  37. Olver, P.J.: Equivalence, Invariants and Symmetry, Cambridge (1995)

    Google Scholar 

  38. Pajdla, T., Van Gool, L.: Matching of 3-d curves using semi-differential invariants. In: ICCV, pp. 390–395 (1995)

    Google Scholar 

  39. Reiss, T.H.: Recognizing Planar Objects Using Invariant Image Features. LNCS, vol. 676. Springer, Heidelberg (1993)

    Book MATH  Google Scholar 

  40. Rothwell, C., Zisserman, A., Forsyth, D., Mundy, J.: Canonical frames for planar object recognition. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 757–772. Springer, Heidelberg (1992)

    Google Scholar 

  41. Rothwell, C., Zisserman, A., Forsyth, D., Mundy, J.: Planar object recognition using projective shape representation. IJCV 16, 57–99 (1995)

    Article  Google Scholar 

  42. Sapiro, G., Tannenbaum, A.: Affine invariant scale space. IJCV 11(1), 25–44 (1993)

    Article  Google Scholar 

  43. Sapiro, G., Tannenbaum, A.: Area and length preserving geometric invariant scale-spaces. PAMI 17(1), 67–72 (1995)

    Google Scholar 

  44. Sato, J., Cipolla, R.: Affine integral invariants for extracting symmetry axes. IVC 15(8), 627–635 (1997)

    Google Scholar 

  45. Shashua, A., Navab, N.: Relative affine structure: Canonical model for 3d from 2d geometry and applications. PAMI 18(9), 873–883 (1996)

    Google Scholar 

  46. Springer, C.E.: Geometry and Analysis of Projective Spaces. Freeman, San Francisco (1964)

    MATH  Google Scholar 

  47. Tieng, Q.M., Boles, W.W.: Recognition of 2d object contours using the wavelet transform zero-crossing representation. PAMI 19(8), 910–916 (1997)

    Google Scholar 

  48. Verestoy, J., Chetverikov, D.: Shape detect detection in ferrite cores. Machine. Graphics and Vision 6(2), 225–236 (1997)

    Google Scholar 

  49. Weiss, I.: Noise resistant invariants of curves. PAMI 15(9), 943–948 (1993)

    Google Scholar 

  50. Witkin, P.: Scale-space filtering. In: Int. Joint. Conf. AI, pp. 1019–1021 (1983)

    Google Scholar 

  51. Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. Trans. Comp. 21, 269–281 (1972)

    Article MATH MathSciNet  Google Scholar 

  52. Zisserman, A., Forsyth, D.A., Mundy, J.L., Rothwell, C.A., Liu, J.S.: 3D object recognition using invariance. Art. Int. 78, 239–288 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of California at Los Angeles, Los Angeles, CA, 90024, USA

    Siddharth Manay & Stefano Soatto

  2. University of Oxford, Oxford, OX1 3BW, UK

    Byung-Woo Hong

  3. Georgia Institute of Technology, Atlanta, GA, 30332, USA

    Anthony J. Yezzi

Authors
  1. Siddharth Manay

    You can also search for this author inPubMed Google Scholar

  2. Byung-Woo Hong

    You can also search for this author inPubMed Google Scholar

  3. Anthony J. Yezzi

    You can also search for this author inPubMed Google Scholar

  4. Stefano Soatto

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Prague 6, Czech Republic

    Tomás Pajdla

  2. Center for Machine Perception, Dept. of Cybernetics, Faculty of Elec. Eng., Czech Technical University in Prague, Karlovo nám. 13, 121 35, Prague, Czech Rep.

    Jiří Matas

Rights and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manay, S., Hong, BW., Yezzi, A.J., Soatto, S. (2004). Integral Invariant Signatures. In: Pajdla, T., Matas, J. (eds) Computer Vision - ECCV 2004. ECCV 2004. Lecture Notes in Computer Science, vol 3024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24673-2_8

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp