Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 2951))
Included in the following conference series:
2045Accesses
Abstract
In the setting of universal composability [Can01], commitments cannot be implemented without additional assumptions such as that of a publicly availablecommon reference string[CF01]. Here, as an alternative to the commitments in the common reference string model, the use ofrandom oracles to achieve universal composability of commitment protocols is motivated. Special emphasis is put on the security in the situation when the additional “helper functionality” is replaced by a realizable primitive. This contribution gives two constructions which allow to turn a given non-interactive commitment scheme into a non-interactive universally composable commitment scheme in the random oracle model. For both constructions the binding and the hiding property remain valid whencollision-free hash functions are used instead of random oracles. Moreover the second construction in this case even preserves the property of perfect binding.
Chapter PDF
Similar content being viewed by others
References
Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model scheme for a hybrid-encryption problem. IACR ePrint Archive (August 2003), Online available at:http://eprint.iacr.org/2003/077.ps
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: 1st ACM Conference on Computer and Communications Security, Proceedings of CCS 1993, pp. 62–73. ACM Press, New York (1993), Full version online available at:http://www.cs.ucsd.edu/users/mihir/papers/ro.ps
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2001, pp. 136–145. IEEE Computer Society, Los Alamitos (2001), Full version online available at:http://eprint.iacr.org/2000/067.ps
Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001), Full version online available at:http://eprint.iacr.org/2001/055.ps
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Thirtieth Annual ACM Symposium on Theory of Computing, Proceedings of STOC 1998, pp. 209–218. ACM Press, New York (1998), Preliminary version, extended version online available at:http://eprint.iacr.org/1998/011.ps
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2002, pp. 494–503. ACM Press, New York (2002), Extended abstract, full version online available at:http://eprint.iacr.org/2002/140.ps
Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)
Damgård, I., Groth, J.: Non-interactive and reusable nonmalleable commitment schemes. In: 35th Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2003, pp. 426–437. ACM Press, New York (2003), Full version online available at:http://eprint.iacr.org/2003/080.ps
Damgård, I.B., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002), Full version online available at:http://eprint.iacr.org/2001/091
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game—a completeness theorem for protocols with honest majority. In: Nineteenth Annual ACM Symposium on Theory of Computing, Proceedings of STOC 1987, pp. 218–229. ACM Press, New York (1987) (Extended abstract)
Goldreich, O.: Secure multi-party computation (October 2002), Online available at:http://www.wisdom.weizmann.ac.il/~oded/PS/prot.ps
Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: 44th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2003, pp. 102–113. IEEE Computer Society, Los Alamitos (2003), Full version online available at:http://eprint.iacr.org/2003/034
Hofheinz, D., Müller-Quade, J., Steinwandt, R.: Initiator-resilient universally composable key exchange. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 61–84. Springer, Heidelberg (2003), Online available at:http://eprint.iacr.org/2003/063.ps
Hofheinz, D., Müller-Quade, J., Steinwandt, R.: On modeling IND-CCA security in cryptographic protocols. IACR ePrint Archive (February 2003), Online available at:http://eprint.iacr.org/2003/024.ps
Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr.Th. Beth, Fakultät für Informatik, Universität Karlsruhe, Germany
Dennis Hofheinz & Jörn Müller-Quade
- Dennis Hofheinz
You can also search for this author inPubMed Google Scholar
- Jörn Müller-Quade
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel
Moni Naor
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hofheinz, D., Müller-Quade, J. (2004). Universally Composable Commitments Using Random Oracles. In: Naor, M. (eds) Theory of Cryptography. TCC 2004. Lecture Notes in Computer Science, vol 2951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24638-1_4
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-21000-9
Online ISBN:978-3-540-24638-1
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative