Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Parallel Iterative Improvement Stable Matching Algorithm

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 2913))

Included in the following conference series:

Abstract

In this paper, we propose a new approach, parallel iterative improvement (PII), to solving the stable matching problem. This approach treats the stable matching problem as an optimization problem with all possible matchings forming its solution space. Since a stable matching always exists for any stable matching problem instance, finding a stable matching is equivalent to finding a matching with the minimum number (which is always zero) of unstable pairs. A particular PII algorithm is presented to show the effectiveness of this approach by constructing a new matching from an existing matching and using techniques such as randomization and greedy selection to speedup the convergence process. Simulation results show that the PII algorithm has better average performance compared with the classical stable matching algorithms and converges inn iterations with high probability. The proposed algorithm is also useful for some real-time applications with stringent time constraint.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abeledo, H., Rothblum, U.G.: Paths to marriage stability. Discrete Applied Mathematics 63, 1–12 (1995)

    Article MATH MathSciNet  Google Scholar 

  2. Anderson, R.: Parallel algorithms for generating random permutations on a shared memory machine. In: Proc. of the 2nd ACM Symposium on Parallel Algorithms and Architectures, pp. 95–102 (1990)

    Google Scholar 

  3. Chuang, S.T., Goel, A., McKeown, N., Prabhakar, B.: Matching output queuing with a combined input/output-queued switch. IEEE Journal on Selected Areas in Communications 17(6), 1030–1039 (1999)

    Article  Google Scholar 

  4. Durstenfeld, R.: Random permutation (Algorithm 235). Communication of ACM 7(7), 420 (1964)

    Article  Google Scholar 

  5. Feder, T., Megiddo, N., Plotkin, S.: A sublinear parallel algorithm for stable matching. Theoretical Computer Science 233, 297–308 (2000)

    Article MATH MathSciNet  Google Scholar 

  6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–15 (1962)

    Article MATH MathSciNet  Google Scholar 

  7. Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM Journal on Computing 16(1), 111–128 (1987)

    Article MATH MathSciNet  Google Scholar 

  8. Gusfield, D., Irving, R.W.: The Stable Marriage Problem Structure and Algorithms. MIT Press, Cambridge (1989)

    MATH  Google Scholar 

  9. Hagerup, T.: Fast parallel generation of random permutations. In: Proc. of the 18th Annual International Colloquium on Automata, Languages and Programming, pp. 405–416 (1991)

    Google Scholar 

  10. Hattori, T., Yamasaki, T., Kumano, M.: New fast iteration algorithm for the solution of generalized stable marriage problem. In: Proc. of IEEE International Conference on Systems, Man, and Cybernetics, vol. 6, pp. 1051–1056 (1999)

    Google Scholar 

  11. Hull, M.E.C.: A parallel view of stable marriages. Information Processing Letters 18(1), 63–66 (1984)

    Article  Google Scholar 

  12. Jaja, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)

    MATH  Google Scholar 

  13. Kapur, D., Krishnamoorthy, M.S.: Worst-case choice for the stable marriage problem. Information Processing Letters 21, 27–30 (1985)

    Article MATH MathSciNet  Google Scholar 

  14. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays · Trees · Hypercubes. Morgan Kaufmann Publishers, San Francisco (1992)

    MATH  Google Scholar 

  15. McKeown, N.: Scheduling algorithms for input-buffered cell switches. Ph.D. Thesis, University of California, Berkeley (1995)

    Google Scholar 

  16. McVitie, D.G., Wilson, L.B.: The stable marriage problem. Communication of the ACM 14(7), 486–490 (1971)

    Article MathSciNet  Google Scholar 

  17. Nong, G., Hamdi, M.: On the provision of quality-of-service guarantees for input queued switches. IEEE Communications Magazine 38(12), 62–69 (2000)

    Article  Google Scholar 

  18. Prabhakar, B., McKeown, N.: On the speedup required for combined input- and output-queued switching. Automatica 35(12), 1909–1920 (1999)

    Article MATH MathSciNet  Google Scholar 

  19. Quinn, M.J.: A note on two parallel algorithms to solve the stable marriage problem. BIT 25, 473–476 (1985)

    Article MathSciNet  Google Scholar 

  20. Stoica, I., Zhang, H.: Exact emulation of an output queuing switch by a combined input output queuing switch. In: Proc. of the 6th IEEE/IFIP IWQoS 1998, Napa Valley, CA, pp. 218–224 (1998)

    Google Scholar 

  21. Subramanian, A.: A new approach to stable matching problems. SIAM Journal on Computing 23(4), 671–700 (1994)

    Article MATH MathSciNet  Google Scholar 

  22. Tseng, S.S., Lee, R.C.T.: A parallel algorithm to solve the stable marriage algorithm. BIT 24, 308–316 (1984)

    Article MATH MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, University of Texas at Dallas, Richardson, TX, 75083-0688, USA

    Enyue Lu & S. Q. Zheng

Authors
  1. Enyue Lu

    You can also search for this author inPubMed Google Scholar

  2. S. Q. Zheng

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. University of Southern California, CA 90089-2562, Los Angeles

    Timothy Mark Pinkston

  2. Department of Electrical Engineering, University of Southern California, CA 90089-2562, Los Angeles, USA

    Viktor K. Prasanna

Rights and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, E., Zheng, S.Q. (2003). A Parallel Iterative Improvement Stable Matching Algorithm. In: Pinkston, T.M., Prasanna, V.K. (eds) High Performance Computing - HiPC 2003. HiPC 2003. Lecture Notes in Computer Science, vol 2913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24596-4_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp