Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Identifier Randomization: An Efficient Protection Against CAN-Bus Attacks

  • Chapter

Abstract

The Cyber-Physical Architecture of vehicles is composed of sensors, actuators, and electronic control units all communicating over shared communication buses. For historical reasons the internal communication buses, as the Controller Area Network (CAN), do not implement security mechanisms; the communications are assumed to be “trusted.” Recently these trusted relations have been challenged and leveraged to launch cyber-physical attacks against modern vehicles. As a result, it becomes urgent to enhance the security features of vehicles and notably the robustness of the CAN bus which represents an important channel of attacks.

In this work we develop identifier randomization procedures whose aim is to protect the CAN protocol from reverse-engineering, replay, and injection attacks. The idea behind this proposition is to constantly change the message identifiers in a random fashion in a way that both sender and receiver can recover the original message identifier but not the adversary. We present the main challenges of the CAN-ID randomization solution, we highlight the weaknesses of state-of-the-art solutions presented in other scientific papers, and we propose and study candidate solutions to overcome these weaknesses. To compare our solutions to state-of-the-art solution, we propose to use the entropy and the conditional entropy as a metrics of security. Results show that the randomization functions that we propose outperform the state-of-the-art solution in terms of both entropy and conditional entropy.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al., Comprehensive experimental analyses of automotive attack surfaces, inUSENIX Security Symposium, San Francisco, 2011

    Google Scholar 

  2. S. Dario, M. Mirco, C. Michele, Detecting attacks to internal vehicle networks through hamming distance, inIEEE 2017 AEIT International Annual Conference-Infrastructures for Energy and ICT (AEIT 2017), 2017

    Google Scholar 

  3. E. de Chérisey, S. Guilley, A. Heuser, O. Rioul, On the optimality and practicability of mutual information analysis in some scenarios. Cryptogr. Commun.10(1), 101–121 (2018)

    Article MathSciNet  Google Scholar 

  4. I.D. Foster, A. Prudhomme, K. Koscher, S. Savage, Fast and vulnerable: a story of telematic failures, inWOOT, 2015

    Google Scholar 

  5. K. Han, A. Weimerskirch, K.G. Shin, Automotive cybersecurity for in-vehicle communication, inIQT Quarterly, vol. 6 (2014), pp. 22–25

    Google Scholar 

  6. K. Han, A. Weimerskirch, K.G. Shin, A practical solution to achieve real-time performance in the automotive network by randomizing frame identifier, inEscar Conference, Cologne, Germany, 2015

    Google Scholar 

  7. O. Hartkopp, R. Schilling, MaCAN - Message authenticated CAN, inEscar Conference, Berlin, 2012

    Google Scholar 

  8. T. Hoppe, S. Kiltz, J. Dittmann, Security threats to automotive CAN networks–practical examples and selected short-term countermeasures, inInternational Conference on Computer Safety, Reliability, and Security (Springer, Berlin, 2008), pp. 235–248

    Google Scholar 

  9. A. Humayed, B. Luo, Using ID-hopping to defend against targeted DoS on CAN, inProceedings of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles (ACM, New York, 2017), pp. 19–26

    Google Scholar 

  10. ISO,11898-1–Road Vehicles–Controller Area Network (CAN)–Part 1: Data Link Layer and Physical Signalling (International Organization for Standardization, Geneva, 2003)

    Google Scholar 

  11. ISO,11898-2–Road Vehicles–Controller Area Network (CAN)–Part 2: High-Speed Medium Access Unit (International Organization for Standardization, Geneva, 2003)

    Google Scholar 

  12. ISO,11898-3–Road Vehicles–Controller Area Network (CAN)–Part 2: Fault Tolerant Medium Access Unit (International Organization for Standardization, Geneva, 2003)

    Google Scholar 

  13. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., Experimental security analysis of a modern automobile, in2010 IEEE Symposium on Security and Privacy (SP) (IEEE, Piscataway, 2010), pp. 447–462

    Book  Google Scholar 

  14. M. Marchetti, D. Stabili, Anomaly detection of CAN bus messages through analysis of ID sequences, in2017 IEEE Intelligent Vehicles Symposium (IV) (IEEE, Piscataway, 2017), pp. 1577–1583

    Book  Google Scholar 

  15. C. Miller, C. Valasek, Adventures in automotive networks and control units.DEF CON21, 260–264 (2013)

    Google Scholar 

  16. C. Miller, C. Valasek, Remote exploitation of an unaltered passenger vehicle. Black Hat USA, 2015

    Google Scholar 

  17. M. Müter, N. Asaj, Entropy-based anomaly detection for in-vehicle networks, in2011 IEEE Intelligent Vehicles Symposium (IV) (IEEE, Piscataway, 2011), pp. 1110–1115

    Book  Google Scholar 

  18. D.K. Nilsson, U.E. Larson, E. Jonsson, Efficient in-vehicle delayed data authentication based on compound message authentication codes, inIEEE 68th Vehicular Technology Conference, 2008. VTC 2008-Fall (IEEE, Piscataway, 2008), pp. 1–5

    Google Scholar 

  19. C. Smith,The Car Hacker’s Handbook: A Guide for the Penetration Tester (No Starch Press, San Francisco, 2016)

    Book  Google Scholar 

  20. A. Taylor, N. Japkowicz, S. Leblanc, Frequency-based anomaly detection for the automotive CAN bus, in2015 World Congress on Industrial Control Systems Security (WCICSS) (IEEE, Piscataway, 2015), pp. 45–49

    Book  Google Scholar 

  21. Testing CAN Network with help of CANtoolz.https://www.slideshare.net/AlexeySintsov/testing-can-network-with-help-of-cantoolz, 2016. Accessed 1 Jan 2018

Download references

Author information

Authors and Affiliations

  1. Télécom ParisTech, Paris, France

    Khaled Karray, Jean-Luc Danger & Sylvain Guilley

  2. Secure-IC S.A.S., Cesson-Sévigné, France

    Jean-Luc Danger

  3. Secure-IC, Paris, France

    Sylvain Guilley

  4. École normale supérieure, Paris, France

    Sylvain Guilley

  5. PSA-GROUPE, Paris, France

    M. Abdelaziz Elaabid

Authors
  1. Khaled Karray

    You can also search for this author inPubMed Google Scholar

  2. Jean-Luc Danger

    You can also search for this author inPubMed Google Scholar

  3. Sylvain Guilley

    You can also search for this author inPubMed Google Scholar

  4. M. Abdelaziz Elaabid

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toKhaled Karray.

Editor information

Editors and Affiliations

  1. İstinye University, İstanbul, Turkey

    Çetin Kaya Koç

  2. Nanjing University of Aeronautics and Astronautics, Nanjing, China

    Çetin Kaya Koç

  3. University of California Santa Barbara, Santa Barbara, CA, USA

    Çetin Kaya Koç

Appendix

Appendix

Letido be a random variable representing original identifiers whose outcome isid1,id2, …,idN with probabilitiesP(id1),P(id2), …,P(idN). We consider a second random variableidr representing randomized identifiers whose outcome is in [0, 2n − 1].

1.1Entropy of Fixed Mapping

The entropy of the fixed mapping solutions (IA-CAN, equal intervals, frequency intervals) is the following:

  • IA-CAN:HIA-CAN(idr) = H(ido) + a

  • Equal Intervals:HEI(idr) = H(ido) + n −log2(N)

  • Frequency Intervals:HFI(idr) = n

Proof

According to the fixed mapping randomization functions (IA-CAN, equal intervals, frequency intervals), each identifieridi is randomized over a fixed intervalIi of widthW(Ii). We begin by computing the probability that the random variableidr takes the valuex ∈ [0, 2n]:

$$\displaystyle \begin{aligned} P(id_r=x) =\sum_{i=1}^N P(id_r=x | id_i ) \times P(id_i)\end{aligned} $$

The conditional probability ofidr knowing the original identifierido = idi:

$$\displaystyle \begin{aligned} P(id_r=x | id_i ) = \frac{1_{I_i} (x) }{W(I_i)}\end{aligned} $$
$$\displaystyle \begin{aligned} H(id_r) &= \sum_{x \in [0,2^n -1]} P(id_r=x) \times \log_2 \left(\frac{1}{P(id_r=x)}\right)\\ &= \sum_{ x \in [0,2^n -1]} \left[\sum_{i =1}^{N} P(id_i) \frac{1_{I_i} (x)}{W(I_i)} \right] \times \log_2 \left(\frac{1}{\left[\sum_{j =1}^{N} P(id_j) \frac{1_{I_j} (x)}{W(I_j)} \right] }\right)\\ &= \sum_{i =1}^{N} \sum_{ x \in [0,2^n -1]} P(id_i) \frac{1_{I_i} (x)}{W(I_i)} \times \log_2 \left(\frac{1}{\left[\sum_{j =1}^{N} P(id_j) \frac{1_{I_j} (x)}{W(I_j)} \right] }\right) \end{aligned} $$
$$\displaystyle \begin{aligned} H(id_r) &= \sum_{i =1}^{N} \sum_{ x \in I_i} P(id_i) \frac{1_{I_i} (x)}{W(I_i)} \times \log_2 \left(\frac{1}{\left[\sum_{j =1}^{N} P(id_j) \frac{1_{I_j} (x)}{W(I_j)} \right] }\right)\\ \end{aligned} $$

Since the intervalsIi are nonoverlapping:\(\forall x \in I_i, \forall j \neq i \rightarrow 1_{I_j} (x) = 0 \)

We can thus simplify the expression:\(\forall x \in I_i, \forall j \neq i \rightarrow \sum _{j =1}^{N} P(id_j) \frac {1_{I_j} (x)}{W(I_j)} = P(id_i) \frac {1_{I_i} (x)}{W(I_i)} \)

$$\displaystyle \begin{aligned} H(id_r) &= \sum_{i =1}^{N} \sum_{ x \in I_i} P(id_i) \frac{1_{I_i} (x)}{W(I_i)} \times \log_2 \left(\frac{1}{P(id_i) \frac{1_{I_i} (x)}{W(I_i)}}\right)\\ &= \sum_{i =1}^{N} \sum_{ x \in I_i} P(id_i) \frac{1}{W(I_i)} \times \log_2 \left(\frac{1}{P(id_i) \frac{1}{W(I_i)}}\right) \end{aligned} $$
  • IA-CAN entropy: ∀i ∈ [1,N],W(Ii) = 2a

    $$\displaystyle \begin{aligned}H(id_r) = \sum_{i=1}^N \sum_{x \in I_i } P(id_i) \frac{1 }{2^a} \times \log_2 \left(\frac{1}{P(id_i) \frac{1}{2^a}}\right) = H(id_o) + a\end{aligned}$$
  • Equal interval entropy:\(\forall i \in [1,N],\ W(I_i) = \frac {2^n}{N}\)

    $$\displaystyle \begin{aligned}H(id_r) = \sum_{i=1}^N \sum_{x \in I_i } P(id_i) \frac{1}{\frac{2^n}{N}} \times \log_2 \left(\frac{1}{P(id_i) \frac{1}{\frac{2^n}{N}}}\right) = H(id_o) + n - \log_2(N)\end{aligned}$$
  • Frequency interval entropy: ∀i ∈ [1,N],W(Ii) = 2n × P(idi)

    $$\displaystyle \begin{aligned}H(id_r) = \sum_{i=1}^N \sum_{x \in I_i } P(id_i) \frac{1}{ 2^n \times P(id_i)} \times \log_2 \left(\frac{1}{P(id_i) \frac{1}{2^n \times P(id_i)}}\right) = n\end{aligned}$$

1.2Conditional Entropy of Fixed Mapping

The conditional entropy of randomized identifiers knowing the original identifiers of the fixed mapping solutions (IA-CAN, equal intervals, frequency intervals) is the following:

  • IA-CAN:HIA-CAN(idr|ido) = a

  • Equal Intervals:HEI(idr|ido) = n −log2(N)

  • Frequency Intervals:HFI(idr|ido) = n − H(ido)

Proof

$$\displaystyle \begin{aligned} H(id_r|id_o) &= H(id_r,id_o) - H(id_o)\\ H(id_r,id_o) &=\sum_{x\in[0,2^n-1]} \sum_{i=0}^N P(id_r=x, id_o=id_i) \log_2\left(\frac{1}{P(id_r=x,id_o=id_i)}\right)\\\end{aligned} $$
$$\displaystyle \begin{aligned} P(id_r=x, id_o=id_i) = \left\{ \begin{array}{lll} P(id_i) \times \frac{1}{w(I_i)} &,& x \in I_i\\ 0 &,& {\mathrm{elsewhere}} \\ \end{array} \right. \end{aligned}$$
$$\displaystyle \begin{aligned} H(id_r,id_o) &=\sum_{i=0}^N \sum_{x\in I_i} \frac{P(id_i)}{w(I_i)} \log_2\left(\frac{1}{P(id_i) \frac{1}{w(I_i)}}\right)\\ H(id_r,id_o) &= H(id_r)\\ H(id_r|id_o) & = H(id_r)- H(id_o)\\\end{aligned} $$
$$\displaystyle \begin{aligned} \hspace{-4.5pc}\begin{array}{lll} \mbox{- IA-CAN conditional entropy }&:& H(id_r | id_o) = a \\ \mbox{- Equal interval conditional entropy}&:& H(id_r | id_o) = n - \log_2(N) \\ \mbox{- Frequency interval conditional entropy}&:& H(id_r | id_o) = n - H(id_o) \\ \end{array} \end{aligned}$$

1.3Entropy of Dynamic Intervals

Let\(id_o^t\) be a Markov chain over the space of original identifiers (id1,id2, …idN). And the matrix M presented in Eq. (25) be its transition matrix. Letidr be the random variable over [0, 2n − 1], generated using the dynamic interval randomization strategy applied to\(id_o^t\). We haveHDI(idr) = n

Proof

$$\displaystyle \begin{aligned} &H(id_r) = \sum_{x \in [0,2^n -1]} P(id_r=x) \times \log_2 \left(\frac{1}{P(id_r=x)}\right) \\ &P(id_r=x) = \sum_i^N P(id_r=x | id_o^t=id_i) \times P(id_o^t=id_i) \\ &P(id_r=x) = \sum_i^N \sum_j^N P(id_r=x | id_i^t , id_j^{t+1}) \times P(id_j^{t+1} | id_i^t) \times P(id_i^t) \\ &P(id_r=x | id_i^t , id_j^{t+1}) = \frac{ 1_{I_{i,j}} (x) }{ W(I_{i,j}) } \end{aligned} $$

where\(W(I_{i,j})= P(id_j^{t+1} | id_i^t) \times 2^{n} is\ the\ width\ of\ the\ interval\ I_{i,j}\)

$$\displaystyle \begin{aligned} P(id_r=x) &= \sum_i^N \sum_j^N \frac{ 1_{I_{i,j}} (x) }{ W(I_{i,j}) } \times P(id_j^{t+1} | id_i^t) \times P(id_i^t) \\ &= \sum_i^N \sum_j^N \frac{ 1_{I_{i,j}} (x) }{ P(id_j^{t+1} | id_i^t) \times 2^{n} } \times P(id_j^{t+1} | id_i^t) \times P(id_i^t) \\ &= \sum_i^N \sum_j^N \frac{ 1_{I_{i,j}} (x) }{ 2^{n} } \times P(id_i^t) \end{aligned} $$

\(\forall x \in [0,2^n -1 ], \sum _j^N 1_{I_{i,j}} (x) = 1\)

$$\displaystyle \begin{aligned} P(id_r=x) &= \sum_i^N \frac{ 1}{ 2^{n} } \times P(id_i^t) = \frac{ 1}{ 2^{n} } \\ H(id_r) &= \sum_{ x \in [0,2^n -1]} \frac{ 1}{ 2^{n} } \times \log_2 \left(\frac{ 1}{ 2^{n} }\right)\\ H(id_r)& = n \end{aligned} $$

1.4Entropy of Arithmetic Masking

Proof

$$\displaystyle \begin{aligned}H(id_r) = \sum_{x \in [0,2^n -1]} P(id_r = x) \log_2\left(\frac{1}{P(id_r = x)}\right)\end{aligned}$$
$$\displaystyle \begin{aligned} P(id_r = x) = \left\{ \begin{array}{lll} \sum_{i=0}^{x} \frac{P(id_i)}{2^n -N +1} &,& x \in [0,N-2]\\ \frac{1}{2^n -N+1} &,& x \in [N-1, 2^n - N] \\ \sum^{N-1}_{i=x-2^n +N} \frac{P(id_{i})}{2^n -N+1} &,& x \in [2^n -N +1 , 2^n-1]\\ \end{array} \right. \end{aligned}$$
$$\displaystyle \begin{aligned} H(id_r) =& \sum_{x \in [N-1, 2^n - N]} \frac{1}{2^n -N+1} \times \log_2 (2^n -N+1)\\ &+ \sum_{x \in [0,N-2]} \left[\sum_{i=0}^{x} \frac{P(id_i)}{2^n -N+1}\right] \times \log_2 \left(\frac{1} {\sum_{i=0}^{x} \frac{P(id_i)}{2^n -N+1} }\right) \\ & + \sum_{x \in [2^n -N+1,2^n-1]} \left[\sum^{N-1}_{i=x-2^n +N} \frac{P(id_{i})}{2^n -N+1}\right]\\ &\times \log_2 \left(\frac{1}{ \sum^{N-1}_{i=x-2^n +N} \frac{P(id_{i})}{2^n -N+1} }\right)\\ H(id_r) = &\frac{2^n -2(N-1)}{2^n -N+1} \log_2 (2^n -N+1) + \sum_{x \in [0,N-2]} \left[\sum_{i=0}^{x} \frac{P(id_i)}{2^n -N+1}\right]\\ &\times \log_2 \left(\frac{1} {\sum_{i=0}^{x} \frac{P(id_i)}{2^n -N+1} }\right) \\ &+ \left[\sum_{i=x+1}^{N-1} \frac{P(id_{i})}{2^n -N+1}\right] \times \log_2 \left(\frac{1} {\sum_{i=x+1}^{N-1} \frac{P(id_{i})}{2^n -N+1}}\right)\\ H(id_r) = &\frac{2^n -2(N-1)}{2^n -N+1} \log_2 (2^n -N+1)\\ &+ \sum_{x \in [0,N-2]} \frac{1}{2^n -N+1} \log_2(2^n -N+1) \\ &+ \sum_{x \in [0,N-2]} \sum_{i=0}^{x} \frac{P(id_i)}{2^n -N +1} \times \log_2 \left(\frac{1} {\sum_{i=0}^{x} P(id_i) }\right)\\ &+ \sum_{i=x+1}^{N-1} \frac{P(id_i)}{2^n -N +1} \times \log_2 \left(\frac{1} {\sum_{i=x+1}^{N-1} P(id_{i})}\right)\\ H(id_r) = &\frac{2^n -2(N-1)}{2^n -N+1} \log_2 (2^n -N+1) + \frac{N-1}{2^n -N+1} \log_2(2^n -N+1) \\ &+ \frac{1}{2^n -N +1} \sum_{x \in [0,N-2]} \sum_{i=0}^{x} P(id_i) \times \log_2 \left(\frac{1} {\sum_{i=0}^{x} P(id_i) }\right)\\ &+ \sum_{i=x+1}^{N-1} P(id_i) \times \log_2 \left(\frac{1} {\sum_{i=x+1}^{N-1} P(id_{i})}\right)\\ H(id_r) = &\frac{2^n -N+1}{2^n -N+1} \log_2 (2^n -N+1) \\ &+ \frac{1}{2^n -N +1} \sum_{x \in [0,N-2]} \sum_{i=0}^{x} P(id_i) \times \log_2 \left(\frac{1} {\sum_{i=0}^{x} P(id_i) }\right)\\ &+ \sum_{i=x+1}^{N-1} P(id_i) \times \log_2 \left(\frac{1} {\sum_{i=x+1}^{N-1} P(id_{i})}\right)\\ H(id_r) = &\log_2 (2^n -N+1) + \frac{1}{2^n -N +1}\sum_{x \in [0,N-2]} \sum_{i=0}^{x} P(id_i)\\ &\times \log_2 \left(\frac{1} {\sum_{i=0}^{x} P(id_i) }\right) + \sum_{i=x+1}^{N-1} P(id_i)\\ &\times \log_2 \left(\frac{1} {\sum_{i=x+1}^{N-1} P(id_{i})}\right) \end{aligned} $$

1.5Conditional Entropy of Arithmetic

The arithmetic masking conditional entropy is:

$$\displaystyle \begin{aligned} H_{AM}(id_r | id_o) = \log_2 (2^n -N+1) \end{aligned}$$

Proof

$$\displaystyle \begin{aligned} P(id_r = x | id_o = id_i) &= \frac{1_{[i-1,2^n -N +i-1]} } {2^n -N +1} \\ H_{AM}(id_r | id_o) &= \sum_{i=0}^N P(id_i) H(id_r | id_o = id_i) \\ H_{AM}(id_r | id_o) &= \sum_{i=0}^N P(id_i) \sum_{x \in [i-1,2^n -N +i-1]} P(id_r = x | id_o = id_i)\\ &\times \log_2\left(\frac{1}{ P(id_r = x | id_o = id_i) }\right) \\ H_{AM}(id_r | id_o) &= \sum_{i=0}^N P(id_i) \sum_{x \in [i-1,2^n -N +i-1]} \frac{1} {2^n -N +1} \log_2\left(\frac{1}{ \frac{1} {2^n -N +1} }\right) \\ H_{AM}(id_r | id_o) &= \sum_{i=0}^N P(id_i) \log_2(2^n -N +1) \\ H_{AM}(id_r | id_o) &= \log_2(2^n -N +1) \end{aligned} $$

1.6Fixed Mapping Optimality Proof

If we adopt a fixed mapping randomization strategy, the optimal solution in terms of conditional entropy is the frequency interval solutions.

Proof

In the context of fixed mapping, we want to find the best decomposition of intervals that maximizes the conditional entropy. We previously showed that the conditional entropy of all fixed mapping solutions can be expressed asH(idr|ido) =∑i ∈ [1,N]P(idi) ×log2(Wi), whereIi is the randomization interval ofidi of widthW(Ii). For the fixed mapping solutions, the intervals are nonoverlapping. Besides the width of each intervalIi is positive (W(Ii) ≥ 0) and their sum equals 2n. Thus we define the following problem:

$$\displaystyle \begin{aligned}\underset{\{I_i\}, i \in [1,N]}{\operatorname{Argmax}} H(id_r|id_o) = \sum_i P(id_i) \times \log_2(W_i)\end{aligned}$$

Subject to the following constraints:

$$\displaystyle \begin{aligned} \begin{array}{lll} h_0 &: &\sum_{i \in [1,N]} W_i - 2^n = 0 \\ h_i &: &\forall i \in [1,N], - W_i \leq 0 \\ \end{array} \end{aligned}$$

To find the solution to this problem, we use the Lagrangian multiplier:

$$\displaystyle \begin{aligned}\mathcal{L} (W_1,\dots,W_N,\lambda_1,\dots\lambda_N,\lambda_0) = H(id_r|id_o) + \sum_{j=0}^{N} \lambda_j h_j\end{aligned}$$

and solve the equation system:\(\frac {\partial \mathcal {L} }{\partial W_i} = 0, \quad\forall i \in [1,N]\)

$$\displaystyle \begin{aligned}\frac{\partial \mathcal{L}}{\partial W_i} (W_1,\dots,W_N,\lambda_1,\dots\lambda_N,\lambda_0) = \frac{\partial H} {\partial W_i} + \sum_{j=0}^{N} \lambda_j \frac{\partial h_j}{\partial W_i}\end{aligned}$$
$$\displaystyle \begin{aligned}\forall i \in [0,N] : \lambda_i \times h_i = 0\end{aligned}$$
$$\displaystyle \begin{aligned} \begin{array}{lll} h_0 &: &\sum_{i \in [1,N]} W_i - 2^n = 0 \\ h_i &: &\forall i \in [1,N], - W_i \leq 0 \\ \end{array} \end{aligned}$$

We have:\(\frac {\partial H} {\partial W_i} = P(id_i) \times \frac {1} {W_i} \) and\(\frac {\partial h_0}{\partial W_i} = 1\) and\(\frac {\partial h_j}{\partial W_i} = -1\) if (i = j), 0 otherwise

$$\displaystyle \begin{aligned}\forall i \in [1,N] : P(id_i) \times \frac{1} {W_i} + \lambda_0 - \lambda_i = 0\end{aligned}$$
$$\displaystyle \begin{aligned}\forall i \in [1,N]: \lambda_i \times h_i = 0\end{aligned}$$

Resolving this system of equations gives:

$$\displaystyle \begin{aligned}\lambda_i = 0, \quad\forall i \in [1,N]\end{aligned}$$
$$\displaystyle \begin{aligned}\lambda_0 = \frac {-1} {2^n }\end{aligned}$$

Hence:

$$\displaystyle \begin{aligned}\Rightarrow \forall i \in [1,N] : W_i = P(id_i) \times 2^n\end{aligned}$$

Rights and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Karray, K., Danger, JL., Guilley, S., Elaabid, M.A. (2018). Identifier Randomization: An Efficient Protection Against CAN-Bus Attacks. In: Koç, Ç.K. (eds) Cyber-Physical Systems Security. Springer, Cham. https://doi.org/10.1007/978-3-319-98935-8_11

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp