Part of the book series:Communications in Computer and Information Science ((CCIS,volume 854))
Included in the following conference series:
1211Accesses
Abstract
Real-world applications using fuzzy ontologies are increasing in the last years, but the problem of fuzzy ontology learning has not received a lot of attention. While most of the previous approaches focus on the problem of learning fuzzy subclass axioms, we focus on learning fuzzy datatypes. In particular, we describe theDatil system, an implementation using unsupervised clustering algorithms to automatically obtain fuzzy datatypes from different input formats. We also illustrate the practical usefulness with an application: semantic lifestyle profiling.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 11439
- Price includes VAT (Japan)
- Softcover Book
- JPY 14299
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
Dátil is the Spanish for the date fruit.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
References
Alexopoulos, P., Wallace, M., Kafentzis, K., Askounis, D.: IKARUS-Onto: a methodology to develop fuzzy ontologies from crisp ones. Knowl. Inf. Syst.32(3), 667–695 (2012)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Advanced Applications in Pattern Recognition, 2nd edn. Plenum Press, New York (1987)
Bobillo, F., Cerami, M., Esteva, F., García-Cerdaña, À., Peñaloza, R., Straccia, U.: Fuzzy description logics. In: Cintula, P., Fermüller, C., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic Volume III, Studies in Logic, Mathematical Logic and Foundations, vol. 58, pp. 1105–1181. College Publications (2015). chapter XVI
Bobillo, F., Ruiz, M.D., Gómez-Romero, J., Sánchez, D.: On the application of data mining techniques to graded ontology building. In: Actas del XVIII Congreso Español sobre Tecnologías y Lógica Fuzzy (ESTYLF 2016), pp. 142–143 (2016)
Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J. Approx. Reason.52(7), 1073–1094 (2011)
Bobillo, F., Straccia, U.: The fuzzy ontology reasoner fuzzyDL. Knowl.-Based Syst.95, 12–34 (2016)
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell.17(8), 790–799 (1995)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell.24, 603–619 (2002)
Díaz-Rodríguez, N., Härmä, A., Helaoui, R., Huitzil, I., Bobillo, F., Straccia, U.: Couch potato or gym addict? Semantic lifestyle profiling with wearables and knowledge graphs. In: Proceedings of the 6th NIPS Workshop on Automated Knowledge Base Construction (AKBC 2017), December 2017
Díaz-Rodríguez, N., León-Cadahía, O., Pegalajar-Cuéllar, M., Lilius, J., Delgado, M.: Handling real-world context-awareness, uncertainty and vagueness in real-time human activity tracking and recognition with a fuzzy ontology-based hybrid method. Sensors14(10), 18131–18171 (2014)
Díaz-Rodríguez, N., Pegalajar-Cuéllar, M., Lilius, J., Delgado, M.: A fuzzy ontology for semantic modelling and recognition of human behaviour. Knowl.-Based Syst.66, 46–60 (2014)
Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner. J. Autom. Reason.53(3), 245–269 (2014)
Gómez-Romero, J., Bobillo, F., Ros, M., Molina-Solana, M., Ruiz, M.D., Martín-Bautista, M.J.: A fuzzy extension of the semantic building information model. Autom. Constr.57, 202–212 (2015)
Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Semant. Web J.2(1), 11–21 (2011)
Iglesias, J., Lehmann, J.: Towards integrating fuzzy logic capabilities into an ontology-based inductive logic programming framework. In: Proceedings of the 11th International Conference on Intelligent Systems Design and Applications (ISDA 2011), pp. 1323–1328 (2011)
Lisi, F.A., Straccia, U.: A logic-based computational method for the automated induction of fuzzy ontology axioms. Fundam. Inform.124(4), 503–519 (2013)
Lisi, F.A., Straccia, U.: Learning in description logics with fuzzy concrete domains. Fundam. Inform.140(3–4), 373–391 (2015)
Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory28(2), 129–137 (1982)
Pires, I.M., Garcia, N.M., Pombo, N., Flrez-Revuelta, F.: From data acquisition to data fusion: a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices. Sensors16(2), 184 (2016)
Staab, S., Studer, R. (eds.): Handbook on Ontologies. IHIS. Springer, Heidelberg (2004).https://doi.org/10.1007/978-3-540-92673-3
Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages. CRC Studies in Informatics Series. Chapman & Hall, New York (2013)
Straccia, U., Mucci, M.: pFOIL-DL: learning (fuzzy)\(\cal{EL}\) concept descriptions from crisp OWL data using a probabilistic ensemble estimation. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC-15), Salamanca, Spain, pp. 345–352. ACM (2015)
Turlach, B.A.: Bandwidth selection in kernel density estimation: a review. CORE and Institut de Statistique (1993)
W3C OWL Working Group: OWL 2 Web Ontology Language: Document Overview (2008).http://www.w3.org/TR/owl2-overview
Zadeh, L.A.: Fuzzy sets. Inf. Control8(3), 338–353 (1965)
Acknowledgment
I. Huitzil was partially funded by Universidad de Zaragoza - Santander Universidades (Ayudas de Movilidad para Latinoamericanos - Estudios de Doctorado). N. Díaz-Rodríguez acknowledges AAPELE.eu EU COST Action IC1303 and EU Erasmus+ Funding; part of her work was done during internship at Philips Research. I. Huitzil and F. Bobillo were partially supported by the projects TIN2016-78011-C4-3-R and CUD2017-17. Special thanks are due to Aki Härmä and Rim Helaoui (Philips Research) for their invaluable help with lifestyle real data.
Author information
Authors and Affiliations
I3A, University of Zaragoza, Zaragoza, Spain
Ignacio Huitzil & Fernando Bobillo
ISTI-CNR, Pisa, Italy
Umberto Straccia
U2IS, ENSTA ParisTech and Inria FLOWERS, Paris, France
Natalia Díaz-Rodríguez
- Ignacio Huitzil
You can also search for this author inPubMed Google Scholar
- Umberto Straccia
You can also search for this author inPubMed Google Scholar
- Natalia Díaz-Rodríguez
You can also search for this author inPubMed Google Scholar
- Fernando Bobillo
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toIgnacio Huitzil.
Editor information
Editors and Affiliations
Universidad de Cádiz, Cádiz, Cadiz, Spain
Jesús Medina
Universidad de Málaga, Málaga, Málaga, Spain
Manuel Ojeda-Aciego
Universidad de Granada, Granada, Spain
José Luis Verdegay
Universidad de Granada, Granada, Spain
David A. Pelta
Universidad de Málaga, Málaga, Málaga, Spain
Inma P. Cabrera
LIP6, Université Pierre et Marie Curie, CNRS, Paris, France
Bernadette Bouchon-Meunier
Iona College, New Rochelle, New York, USA
Ronald R. Yager
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Huitzil, I., Straccia, U., Díaz-Rodríguez, N., Bobillo, F. (2018). Datil: Learning Fuzzy Ontology Datatypes. In: Medina, J.,et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_9
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-319-91475-6
Online ISBN:978-3-319-91476-3
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative