Part of the book series:Advances in Experimental Medicine and Biology ((AEMB,volume 1053))
Abstract
Ff filamentous phage (fd, M13 and f1) ofEscherichia coli have been the workhorse of phage display technology for the past 30 years. Dominance of Ff over other bacteriophage in display technology stems from the titres that are about 100-fold higher than any other known phage, efficacious transformation ensuring large library size and superior stability of the virion at high temperatures, detergents and pH extremes, allowing broad range of biopanning conditions in screening phage display libraries. Due to the excellent understanding of infection and assembly requirements, Ff phage have also been at the core of phage-assisted continual protein evolution strategies (PACE). This chapter will give an overview of the Ff filamentous phage structure and biology, emphasizing those properties of the Ff phage life cycle and virion that are pertinent to phage display applications.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 19447
- Price includes VAT (Japan)
- Softcover Book
- JPY 24309
- Price includes VAT (Japan)
- Hardcover Book
- JPY 24309
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

Cryo-electron microscopy of the f1 filamentous phage reveals insights into viral infection and assembly
References
Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201
Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88(18):7978–7982
Barbas CF, Burton DR, Scott JK, Silverman GJ (2004) Phage display: a laboratory manual. CSHL Press, Cold Spring Harbor
Beghetto E, Gargano N (2011) Lambda-display: a powerful tool for antigen discovery. Molecules 16(4):3089–3105
Bennett NJ, Gagic D, Sutherland-Smith AJ, Rakonjac J (2011) Characterization of a dual-function domain that mediates membrane insertion and excision of Ff filamentous bacteriophage. J Mol Biol 411(5):972–985
Bennett NJ, Rakonjac J (2006) Unlocking of the filamentous bacteriophage virion during infection is mediated by the C domain of pIII. J Mol Biol 356(2):266–273
Bernard JM, Francis MB (2014) Chemical strategies for the covalent modification of filamentous phage. Front Microbiol 5:734.https://doi.org/10.3389/fmicb.2014.00734
Bille E, Zahar JR, Perrin A, Morelle S, Kriz P, Jolley KA, Maiden MC, Dervin C, Nassif X, Tinsley CR (2005) A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med 201(12):1905–1913
Boeke JD, Model P (1982) A prokaryotic membrane anchor sequence: carboxyl terminus of bacteriophage f1 gene III protein retains it in the membrane. Proc Natl Acad Sci U S A 79(17):5200–5204
Boeke JD, Model P, Zinder ND (1982) Effects of bacteriophage f1 gene III protein on the host cell membrane. Mol Gen Genet 186(2):185–192
Bradbury AR, Marks JD (2004) Antibodies from phage antibody libraries. J Immunol Methods 290(1–2):29–49
Branston S, Stanley E, Ward J, Keshavarz-Moore E (2011) Study of robustness of filamentous bacteriophages for industrial applications. Biotechnol Bioeng 108(6):1468–1472
Branston SD, Stanley EC, Ward JM, Keshavarz-Moore E (2013) Determination of the survival of bacteriophage M13 from chemical and physical challenges to assist in its sustainable bioprocessing. Biotechnol Bioprocess Eng 18(3):560–566
Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein ofEscherichia coli. Proc Natl Acad Sci U S A 87(3):862–866
Brodel AK, Jaramillo A, Isalan M (2016) Engineering orthogonal dual transcription factors for multi-input synthetic promoters. Nat Commun 7:13858
Cao BR, Yang MY, Mao CB (2016) Phage as a genetically modifiable supramacromolecule in chemistry, materials and medicine. Acc Chem Res 49(6):1111–1120
Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71(1):158–229
Chamberlain BK, Webster RE (1976) Lipid-protein interactions inEscherichia coli. Membrane-associated f1 bacteriophage coat protein and phospholipid metabolism. J Biol Chem 251(24):7739–7745
Chamberlain BK, Webster RE (1978) Effect of membrane-associated f1 bacteriophage coat protein upon the activity ofEscherichia coli phosphatidylserine synthetase. J Bacteriol 135(3):883–887
Chasteen L, Ayriss J, Pavlik P, Bradbury AR (2006) Eliminating helper phage from phage display. Nucleic Acids Res 34(21):e145
Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357(6375):216–222
Chung WJ, Lee DY, Yoo SY (2014) Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine. Int J Nanomedicine 9:5825–5836
Chung WJ, Oh JW, Kwak K, Lee BY, Meyer J, Wang E, Hexemer A, Lee SW (2011) Biomimetic self-templating supramolecular structures. Nature 478(7369):364–368
Ciric M, Moon CD, Leahy SC, Creevey CJ, Altermann E, Attwood GT, Rakonjac J, Gagic D (2014) Metasecretome-selective phage display approach for mining the functional potential of a rumen microbial community. BMC Genomics 15:356
Clack BA, Gray DM (1992) Flow linear dichroism spectra of 4 filamentous bacteriophages – DNA and coat protein contributions. Biopolymers 32(7):795–810
Clarke M, Maddera L, Harris RL, Silverman PM (2008) F-pili dynamics by live-cell imaging. Proc Natl Acad Sci U S A 105(46):17978–17981
Click EM, Webster RE (1997) Filamentous phage infection: required interactions with the TolA protein. J Bacteriol 179(20):6464–6471
Click EM, Webster RE (1998) The TolQRA proteins are required for membrane insertion of the major capsid protein of the filamentous phage f1 during infection. J Bacteriol 180(7):1723–1728
Craig L, Li J (2008) Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 18(2):267–277
Daefler S, Guilvout I, Hardie KR, Pugsley AP, Russel M (1997) The C-terminal domain of the secretin PulD contains the binding site for its cognate chaperone, PulS, and confers PulS dependence on plV(f1) function. Mol Microbiol 24(3):465–475
Darwin AJ (2005) Genome-wide screens to identify genes of human pathogenic Yersinia species that are expressed during host infection. Curr Issues Mol Biol 7(2):135–149
Das B (2014) Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 5:650.https://doi.org/10.3389/fmicb.2014.00650
Davis NG, Boeke JD, Model P (1985) Fine structure of a membrane anchor domain. J Mol Biol 181(1):111–121
Davis NG, Model P (1985) An artificial anchor domain: hydrophobicity suffices to stop transfer. Cell 41(2):607–614
Day, L. A. (2011). Family Inoviridae. Virus taxonomy: classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. A. M. Q. King, M. J. Adams, E. B. Carstens and E. J. Lefkowitz. San Diego, Elsevier Academic Press: 375-384
Day LA, Marzec CJ, Reisberg SA, Casadevall A (1988) DNA packing in filamentous bacteriophages. Annu Rev Biophys Biophys Chem 17:509–539
DeLano WL (2006) The PyMOL Molecular Graphics System, fromhttp://www.pymol.org
Deng LW, Perham RN (2002) Delineating the site of interaction on the pIII protein of filamentous bacteriophage fd with the F-pilus ofEscherichia coli. J Mol Biol 319(3):603–614
Derda R, Tang SK, Li SC, Ng S, Matochko W, Jafari MR (2011) Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16(2):1776–1803
Dogic Z (2016) Filamentous phages as a model system in soft matter physics. Front Microbiol 7:1013.https://doi.org/10.3389/fmicb.2016.01013
Dotto GP, Horiuchi K, Zinder ND (1982) Initiation and termination of phage f1 plus-strand synthesis. Proc Natl Acad Sci U S A 79(23):7122–7126
Eckert B, Martin A, Balbach J, Schmid FX (2007) Prolyl isomerization as a molecular timer in phage infection. Nat Struct Mol Biol 12(7):619–623
Edens L, Konings RN, Schoenmakers JG (1978) A cascade mechanism of transcription in bacteriophage M13 DNA. Virology 86(2):354–367
Endemann H, Model P (1995) Location of filamentous phage minor coat proteins in phage and in infected cells. J Mol Biol 250(4):496–506
Enea V, Horiuchi K, Turgeon BG, Zinder ND (1977) Physical map of defective interfering particles of bacteriophage f1. J Mol Biol 111(4):395–414
Enea V, Zinder ND (1982) Interference resistant mutants of phage f1. Virology 122(1):222–226
Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472(7344):499–503
Feng JN, Russel M, Model P (1997) A permeabilized cell system that assembles filamentous bacteriophage. Proc Natl Acad Sci U S A 94(8):4068–4073
Fernandez LA (2004) Prokaryotic expression of antibodies and affibodies. Curr Opin Biotechnol 15(4):364–373
Fuh G, Sidhu SS (2000) Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein. FEBS Lett 480(2–3):231–234
Fulford W, Model P (1988) Bacteriophage f1 DNA replication genes. II. The roles of gene V protein and gene II protein in complementary strand synthesis. J Mol Biol 203(1):39–48
Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J (2016) Exploring the secretomes of microbes and microbial communities using filamentous phage display. Front Microbiol 7:429.https://doi.org/10.3389/fmicb.2016.00429
Gamkrelidze M, Dabrowska K (2014) T4 bacteriophage as a phage display platform. Arch Microbiol 196(7):473–479
Gao C, Lin CH, Lo CH, Mao S, Wirsching P, Lerner RA, Janda KD (1997) Making chemistry selectable by linking it to infectivity. Proc Natl Acad Sci U S A 94(22):11777–11782
Gao C, Mao S, Kaufmann G, Wirsching P, Lerner RA, Janda KD (2002) A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sci U S A 99(20):12612–12616
Gerding MA, Ogata Y, Pecora ND, Niki H, de Boer PA (2007) The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction inE. coli. Mol Microbiol 63(4):1008–1025
Goldbourt A, Gross BJ, Day LA, McDermott AE (2007) Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. J Am Chem Soc 129(8):2338–2344
Goodrich AF, Steege DA (1999) Roles of polyadenylation and nucleolytic cleavage in the filamentous phage mRNA processing and decay pathways inEscherichia coli. RNA 5(7):972–985
Grant R, Lin T, Webster R, Konigsberg W (1980) Structure of filamentous bacteriophage: isolation, characterization, and localization of the minor coat proteins and orientation of the DNA. In: DuBow M (ed) Bacteriophage Assembly, vol 64. Alan. R. Liss, Inc, New York, pp 413–428
Griffiths AD, Malmqvist M, Marks JD, Bye JM, Embleton MJ, McCafferty J, Baier M, Holliger KP, Gorick BD, Hughes-Jones NC et al (1993) Human anti-self antibodies with high specificity from phage display libraries. EMBO J 12(2):725–734
Guan Y, Zhang H, Wang AH (1995) Electrostatic potential distribution of the gene V protein from Ff phage facilitates cooperative DNA binding: a model of the GVP-ssDNA complex. Protein Sci 4(2):187–197
Haigh NG, Webster RE (1999) The pI and pXI assembly proteins serve separate and essential roles in filamentous phage assembly. J Mol Biol 293(5):1017–1027
Heilpern AJ, Waldor MK (2000) CTXϕ infection ofVibrio cholerae requires the tolQRA gene products. J Bacteriol 182(6):1739–1747
Heilpern AJ, Waldor MK (2003) pIIICTX, a predicted CTXϕ minor coat protein, can expand the host range of coliphage fd to includeVibrio cholerae. J Bacteriol 185(3):1037–1044
Henry KA, Arbabi-Ghahroudi M, Scott JK (2015) Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 6:755.https://doi.org/10.3389/fmicb.2015.00755
Henry KA, Tanha J, Hussack G (2015) Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing. Protein Eng Des Sel 28(10):379–383
Higashitani N, Higashitani A, Guan ZW, Horiuchi K (1996) Recognition mechanisms of the minus-strand origin of phage f1 byEscherichia coli RNA polymerase. Genes Cells 1(9):829–841
Hofschneider PH (1963) Untersuchungen uber kleine E.coli K 12 bakteriophagen 1 und 2 mitteilung. Z Naturforsch Pt B B18(3):203–210
Holland SJ, Sanz C, Perham RN (2006) Identification and specificity of pilus adsorption proteins of filamentous bacteriophages infectingPseudomonas aeruginosa. Virology 345(2):540–548
Holliger P, Riechmann L, Williams RL (1999) Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 A: evidence for conformational lability. J Mol Biol 288(4):649–657
Huang Y, Chiang CY, Lee SK, Gao Y, Hu EL, De Yoreo J, Belcher AM (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5(7):1429–1434
Jespers LS, De Keyser A, Stanssens PE (1996) LambdaZLG6: a phage lambda vector for high-efficiency cloning and surface expression of cDNA libraries on filamentous phage. Gene 173(2):179–181
Johnson TL, Abendroth J, Hol WG, Sandkvist M (2006) Type II secretion: from structure to function. FEMS Microbiol Lett 255(2):175–186
Karlinsey JE, Maguire ME, Becker LA, Crouch MLV, Fang FC (2010) The phage shock protein PspA facilitates divalent metal transport and is required for virulence ofSalmonella enterica sv. Typhimurium. Mol Microbiol 78(3):669–685
Khanum S (2015) Characterisation of the secretins, large outer membrane channels of Gram-negative bacteria. PhD, Massey University
Korotkov KV, Gonen T, Hol WG (2011) Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci 36(8):433–443
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580
Kuo TT, Lin YH, Huang CM, Chang SF, Dai H, Feng TY (1987) The lysogenic cycle of the filamentous phage Cflt fromXanthomonas campestris pv. citri. Virology 156(2):305–312
La Farina M, Model P (1983) Transcription in bacteriophage f1-infectedEscherichia coli. Messenger populations in the infected cell. J Mol Biol 164(3):377–393
Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224(1):1–15
Lee S, Mao C, Flynn C, Belcher A (2002) Ordering of quantum dots using genetically engineered viruses. Science 296(5569):892–895
Lerner TJ, Model P (1981) The “steady state” of coliphage f1: DNA synthesis late in infection. Virology 115(2):282–294
Lin A, Jimenez J, Derr J, Vera P, Manapat ML, Esvelt KM, Villanueva L, Liu DR, Chen IA (2011) Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model. PLoS One 6(5):e19991
Liu DJ, Day LA (1994) Pf1 virus structure: helical coat protein and DNA with paraxial phosphates. Science 265(5172):671–674
Loeb T (1960) Isolation of a bacteriophage specific for the F+ and Hfr mating types ofEscherichia coli K-12. Science 131:932–933
Lorenz SH, Jakob RP, Weininger U, Balbach J, Dobbek H, Schmid FX (2011) The filamentous phages fd and IF1 use different mechanisms to infectEscherichia coli. J Mol Biol 405(4):989–1003
Lubkowski J, Hennecke F, Pluckthun A, Wlodawer A (1998) The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p. Nat Struct Biol 5(2):140–147
Lubkowski J, Hennecke F, Pluckthun A, Wlodawer A (1999) Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structure 7(6):711–722
Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA (2015) Big things in small packages: the genetics of filamentous phage and effects on fitness of their host. FEMS Microbiol Rev 39(4):465–487
Maier B (2005) Using laser tweezers to measure twitching motility in Neisseria. Curr Opin Microbiol 8(3):344–349
Mao C, Solis D, Reiss B, Kottmann S, Sweeney R, Hayhurst A, Georgiou G, Iverson B, Belcher A (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303(5655):213–217
Marciano DK, Russel M, Simon SM (1999) An aqueous channel for filamentous phage export. Science 284(5419):1516–1519
Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222(3):581–597
Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE, Unger VM (2004) Structural insights into the assembly of the type III secretion needle complex. Science 306(5698):1040–1042
Marlovits TC, Stebbins CE (2010) Type III secretion systems shape up as they ship out. Curr Opin Microbiol 13(1):47–52
Marvin DA, Hoffmann-Berling H (1963) Physical and chemical properties of two new small bacteriophages. Nature 197:517–518
Marvin DA (1998) Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8(2):150–158
Marvin DA, Symmons MF, Straus SK (2014) Structure and assembly of filamentous bacteriophages. Prog Biophys Mol Biol 114(2):80–122
Marvin DA, Welsh LC, Symmons MF, Scott WR, Straus SK (2006) Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J Mol Biol 355(2):294–309
Marzari R, Sblattero D, Righi M, Bradbury A (1997) Extending filamentous phage host range by the grafting of a heterologous receptor binding domain. Gene 185(1):27–33
Matochko WL, Derda R (2013) Error analysis of deep sequencing of phage libraries: peptides censored in sequencing. Comput Math Methods Med 2013:491612
McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554
McLeod SM, Kimsey HH, Davis BM, Waldor MK (2005) CTXϕ andVibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 57(2):347–356
Michel B, Zinder ND (1989) Translational repression in bacteriophage f1: characterization of the gene V protein target on the gene II mRNA. Proc Natl Acad Sci U S A 86(11):4002–4006
Model P, Jovanovic G, Dworkin J (1997) TheEscherichia coli phage shock protein operon. Mol Microbiol 24:255–261
Model P, Russel M (1988) Filamentous bacteriophage. In: Calendar R (ed) The bacteriophages, vol 2. Plenum Publishing, New York, pp 375–456
Moses PB, Boeke JD, Horiuchi K, Zinder ND (1980) Restructuring the bacteriophage f1 genome: expression of gene VIII in the intergenic space. Virology 104(2):267–278
Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B (2006) Phage display in the study of infectious diseases. Trends Microbiol 14(3):141–147
Ng F, Kittelmann S, Patchett ML, Attwood GT, Janssen PH, Rakonjac J, Gagic D (2016) An adhesin from hydrogen-utilizing rumen methanogenMethanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ Microbiol 18(9):3010–3021
Nguyen KT, Adamkiewicz MA, Hebert LE, Zygiel EM, Boyle HR, Martone CM, Melendez-Rios CB, Noren KA, Noren CJ, Hall MF (2014) Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries. Anal Biochem 462:35–43
JW O, Chung WJ, Heo K, Jin HE, Lee BY, Wang E, Zueger C, Wong W, Meyer J, Kim C, Lee SY, Kim WG, Zemla M, Auer M, Hexemer A, Lee SW (2014) Biomimetic virus-based colourimetric sensors. Nat Commun 5:3043.https://doi.org/10.1038/ncomms4043
Olsthoorn R, van Duin J (2011) Bacteriophages with ssRNA. eLS, John Wiley & Sons, Ltd
Onishi Y (1971) Phospholipids of virus-induced membranes in cytoplasm ofEscherichia coli. J Bacteriol 107(3):918–925
Ou JT (1973) Inhibition of formation ofEscherichia coli mating pairs by f1 and MS2 bacteriophages as determined with a coulter counter. J Bacteriol 114(3):1108–1115
Pacheco-Gomez R, Kraemer J, Stokoe S, England HJ, Penn CW, Stanley E, Rodger A, Ward J, Hicks MR, Dafforn TR (2012) Detection of pathogenic bacteria using a homogeneous immunoassay based on shear alignment of virus particles and linear dichroism. Anal Chem 84(1):91–97
Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16(7):379–394
Park SH, Marassi FM, Black D, Opella SJ (2010) Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. Biophys J 99(5):1465–1474
Petrenko VA, Smith GP, Gong X, Quinn T (1996) A library of organic landscapes on filamentous phage. Protein Eng 9(9):797–801
Pratt D, Tzagoloff H, Erdahl WS (1966) Conditional lethal mutants of the small filamentous coliphage M13. I. Isolation, complementation, cell killing, time of cistron action. Virology 30(3):397–410
Rakonjac J (1998) The roles of pIII in filamentous phage assembly. PhD, The Rockefeller University
Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13(2):51–76
Rakonjac J, Feng J, Model P (1999) Filamentous phage are released from the bacterial membrane by a two-step mechanism involving a short C-terminal fragment of pIII. J Mol Biol 289(5):1253–1265
Rakonjac J, Model P (1998) Roles of pIII in filamentous phage assembly. J Mol Biol 282(1):25–41
Ravetch JV, Horiuchi K, Zinder ND (1979) DNA sequence analysis of the defective interfering particles of bacteriophage f1. J Mol Biol 128(3):305–318
Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, Hauser A, McDougald D, Webb JS, Kjelleberg S (2009) The biofilm life cycle and virulence ofPseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3(3):271–282
Riechmann L, Holliger P (1997) The C-terminal domain of TolA is the coreceptor for filamentous phage infection ofE. coli. Cell 90(2):351–360
Rieul C, Cortay JC, Bleicher F, Cozzone AJ (1987) Effect of bacteriophage M13 infection on phosphorylation of DnaK protein and otherEscherichia coli proteins. Eur J Biochem 168(3):621–627
Russel M (1993) Protein-protein interactions during filamentous phage assembly. J Mol Biol 231(3):689–697
Russel M, Kidd S, Kelley MR (1986) An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene 45(3):333–338
Russel M, Linderoth NA, Sali A (1997) Filamentous phage assembly: variation on a protein export theme. Gene 192(1):23–32
Russel M, Model P (1983) A bacterial gene,fip, required for filamentous bacteriophage fl assembly. J Bacteriol 154(3):1064–1076
Russel M, Model P (1986) The role of thioredoxin in filamentous phage assembly – construction, isolation, and characterisation of mutant thioredoxins. J Biol Chem 261(32):4997–5005
Russel M, Model P (1989) Genetic analysis of the filamentous bacteriophage packaging signal and of the proteins that interact with it. J Virol 63(8):3284–3295
Russel M, Model P (2006) Filamentous Phage. In: Calendar RC (ed) The bacteriophages, 2nd edn. Oxford University Press, Inc, New York, pp 146–160
Russel M, Whirlow H, Sun TP, Webster RE (1988) Low-frequency infection of F- bacteria by transducing particles of filamentous bacteriophages. J Bacteriol 170(11):5312–5316
Samuelson JC, Chen M, Jiang F, Moller I, Wiedmann M, Kuhn A, Phillips GJ, Dalbey RE (2000) YidC mediates membrane protein insertion in bacteria. Nature 406(6796):637–641
Sattar S (2013) Filamentous phage-derived nano-rods for applications in diagnostics and vaccines. PhD, Massey University
Sattar S, Bennett NJ, Wen WX, Guthrie JM, Blackwell LF, Conway JF, Rakonjac J (2015) Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage. Front Microbiol 6:316.https://doi.org/10.3389/fmicb.2015.00316
Sblattero D, Bradbury A (2000) Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol 18(1):75–80
Schwartz FM, Zinder N (1968) Morphological changes inEscherichia coli infected with the DNA bacteriophage f1. Virology 34(2):352–355
Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249(4967):386–390
Sharma P, Ward A, Gibaud T, Hagan MF, Dogic Z (2014) Hierarchical organization of chiral rafts in colloidal membranes. Nature 513(7516):77–80
Smeal SW, Schmitt MA, Pereira RR, Prasad A, Fisk JD (2017) Simulation of the M13 life cycle I: assembly of a genetically-structured deterministic chemical kinetic simulation. Virology 500:259–274
Smeal SW, Schmitt MA, Pereira RR, Prasad A, Fisk JD (2017) Simulation of the M13 life cycle II: investigation of the control mechanisms of M13 infection and establishment of the carrier state. Virology 500:275–284
Smilowitz H (1974) Bacteriophage f1 infection: fate of the parental major coat protein. J Virol 13(1):94–99
Soltes G, Hust M, Ng KK, Bansal A, Field J, Stewart DI, Dubel S, Cha S, Wiersma EJ (2007) On the influence of vector design on antibody phage display. J Biotechnol 127(4):626–637
Spagnuolo J, Opalka N, Wen WX, Gagic D, Chabaud E, Bellini P, Bennett MD, Norris GE, Darst SA, Russel M, Rakonjac J (2010) Identification of the gate regions in the primary structure of the secretin pIV. Mol Microbiol 76(1):133–150
Specthrie L, Bullitt E, Horiuchi K, Model P, Russel M, Makowski L (1992) Construction of a microphage variant of filamentous bacteriophage. J Mol Biol 228(3):720–724
Stopar D, Spruijt RB, Wolfs CJ, Hemminga MA (2002) Structural characterization of bacteriophage M13 solubilization by amphiphiles. Biochim Biophys Acta 1594(1):54–63
Tjhung KF, Deiss F, Tran J, Chou Y, Derda R (2015) Intra-domain phage display (ID-PhD) of peptides and protein mini-domains censored from canonical pIII phage display. Front Microbiol 6:340.https://doi.org/10.3389/fmicb.2015.00340
Tran NQ, Lee SJ, Akabayov B, Johnson DE, Richardson CC (2012) Thioredoxin, the processivity factor, sequesters an exposed cysteine in the thumb domain of bacteriophage T7 DNA polymerase. J Biol Chem 287(47):39732–39741
Trenkner E, Bonhoeffer F, Gierer A (1967) The fate of the protein component of bacteriophage fd during infection. Biochem Biophys Res Commun 28(6):932–939
Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11
Weiner L, Model P (1994) Role of anEscherichia coli stress-response operon in stationary-phase survival. Proc Natl Acad Sci U S A 91(6):2191–2195
Woolford JL Jr, Cashman JS, Webster RE (1974) F1 coat protein synthesis and altered phospholipid metabolism in f1 infectedEscherichia coli. Virology 58(2):544–560
Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JR, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, Strynadka NC (2016) Near-atomic-resolution cryo-EM analysis of the salmonella T3S injectisome basal body. Nature 540:597–601
Yan Z, Yin M, Xu D, Zhu Y, Li X (2017) Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol 24(2):177–183
Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33(1):103–119
Zenkin N, Naryshkina T, Kuznedelov K, Severinov K (2006) The mechanism of DNA replication primer synthesis by RNA polymerase. Nature 439(7076):617–620
Zhang KY, He J, Yang M, Yen M, Yin J (2009) Identifying natural product biosynthetic genes from a soil metagenome by using T7 phage selection. Chembiochem 10(16):2599–2606
Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40.https://doi.org/10.1186/1471-2105-9-40
Zinder ND, Horiuchi K (1985) Multiregulatory element of filamentous bacteriophages. Microbiol Rev 49(2):101–106
Zweckstetter M, Bax A (2001) Characterization of molecular alignment in aqueous suspensions of Pf1 bacteriophage. J Biomol NMR 20(4):365–377
Acknowledgments
Jasna Rakonjac wishes to especially acknowledge the late Peter Model (Rockefeller University), for generously sharing his knowledge through discussions and advice, and for the gifts of filamentous phage andE. coli strain collections. Funding to JR laboratory by Palmerston North Medical Research Foundation, Massey University, Institute of Fundamental Sciences, Anonymous Donor and the Maurice Wilkins Centre for Molecular Biodiscovery is gratefully acknowledged.
Author information
Authors and Affiliations
Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
Jasna Rakonjac, Sofia Khanum, Sam J. Brooke & Marina Rajič
Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
Jasna Rakonjac & Marina Rajič
The Rockefeller University, New York, NY, USA
Marjorie Russel
- Jasna Rakonjac
You can also search for this author inPubMed Google Scholar
- Marjorie Russel
You can also search for this author inPubMed Google Scholar
- Sofia Khanum
You can also search for this author inPubMed Google Scholar
- Sam J. Brooke
You can also search for this author inPubMed Google Scholar
- Marina Rajič
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJasna Rakonjac.
Editor information
Editors and Affiliations
Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
Theam Soon Lim
Additional information
This article is dedicated to the memory of Peter Model, a pioneer of filamentous bacteriophage research and a greatly admired mentor to students and junior faculty at the Rockefeller University.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Rakonjac, J., Russel, M., Khanum, S., Brooke, S.J., Rajič, M. (2017). Filamentous Phage: Structure and Biology. In: Lim, T. (eds) Recombinant Antibodies for Infectious Diseases. Advances in Experimental Medicine and Biology, vol 1053. Springer, Cham. https://doi.org/10.1007/978-3-319-72077-7_1
Download citation
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative