Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Deep Encoding Features for Instance Retrieval

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 10636))

Included in the following conference series:

  • 4515Accesses

Abstract

In this paper, we propose a novel approach for instance retrieval. Compared with traditional retrieval pipeline, we first locate several candidate regions of target object with a region proposal network (RPN), instead of exhausting sliding window method. The candidate regions are detected through the trained RPN. Then we obtain the region-wise convolutional feature maps (CFMs) by forwarding them through a ROI pooling layer. Our feature encoding representation builds on the common sense that similar patterns have similar activations on feature maps. The target object is regarded as a combination of several meaningful patterns. In this way, we represent an image with the combination of encoded descriptors corresponding to the subsets of the proposed region. We also implement reranking algorithm to refine the proposed region in local retrieval. Through extensive experiments, we demonstrate the suitability of our feature encoding representation for instance retrieval, achieving comparable performance on both Oxford and Paris buildings benchmarks.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277 (2015)

    Google Scholar 

  2. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_38

    Google Scholar 

  3. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  4. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  5. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). doi:10.1007/978-3-319-46466-4_15

    Chapter  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311. IEEE (2010)

    Google Scholar 

  8. Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 685–701. Springer, Cham (2016). doi:10.1007/978-3-319-46604-0_48

    Chapter  Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Mikulik, A., Perdoch, M., Chum, O., Matas, J.: Learning vocabularies over a fine quantization. Int. J. Comput. Vis.103(1), 163–175 (2013)

    Article MathSciNet  Google Scholar 

  11. Mohedano, E., McGuinness, K., O’Connor, N.E., Salvador, A., Marqués, F., Giró-i Nieto, X.: Bags of local convolutional features for scalable instance search. In: Proceedings of the 2016 ACM on ICMR, pp. 327–331. ACM (2016)

    Google Scholar 

  12. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  13. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: IEEE Conference on CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556 (2014)

  16. Sivic, J., Zisserman, A., et al.: Video google: a text retrieval approach to object matching in videos. In: ICCV, pp. 1470–1477 (2003)

    Google Scholar 

  17. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. arXiv preprintarXiv:1511.05879 (2015)

  18. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: 2010 IEEE Conference on CVPR, pp. 3360–3367. IEEE (2010)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 91420302) and the National Basic Research Program of China (Grant No. 2015CB856004), and the Key Basic Research Program of Shanghai, China (15JC1400103).

Author information

Authors and Affiliations

  1. Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

    Zhiming Ding, Zhengzhong Zhou & Liqing Zhang

Authors
  1. Zhiming Ding

    You can also search for this author inPubMed Google Scholar

  2. Zhengzhong Zhou

    You can also search for this author inPubMed Google Scholar

  3. Liqing Zhang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toLiqing Zhang.

Editor information

Editors and Affiliations

  1. Guangdong University of Technology, Guangzhou, China

    Derong Liu

  2. Guangdong University of Technology, Guangzhou, China

    Shengli Xie

  3. South China University of Technology, Guangzhou, China

    Yuanqing Li

  4. Institute of Automation, Chinese Academy of Sciences, Beijing, China

    Dongbin Zhao

  5. King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

    El-Sayed M. El-Alfy

Rights and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ding, Z., Zhou, Z., Zhang, L. (2017). Deep Encoding Features for Instance Retrieval. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10636. Springer, Cham. https://doi.org/10.1007/978-3-319-70090-8_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp