Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Using Parallel Strategies to Speed up Pareto Local Search

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 10593))

Included in the following conference series:

  • 3266Accesses

Abstract

Pareto Local Search (PLS) is a basic building block in many state-of-the-art multiobjective combinatorial optimization algorithms. However, the basic PLS requires a long time to find high-quality solutions. In this paper, we propose and investigate several parallel strategies to speed up PLS. These strategies are based on a parallel multi-search framework. In our experiments, we investigate the performances of different parallel variants of PLS on the multiobjective unconstrained binary quadratic programming problem. Each PLS variant is a combination of the proposed parallel strategies. The experimental results show that the proposed approaches can significantly speed up PLS while maintaining about the same solution quality. In addition, we introduce a new way to visualize the search process of PLS on two-objective problems, which is helpful to understand the behaviors of PLS algorithms.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Branke, J., Schmeck, H., Deb, K., Reddy, S.M.: Parallelizing multi-objective evolutionary algorithms: cone separation. In: IEEE Congress on Evolutionary Computation. vol. 2, pp. 1952–1957. IEEE (2004)

    Google Scholar 

  2. Derbel, B., Liefooghe, A., Zhang, Q., Aguirre, H., Tanaka, K.: Multi-objective local search based on decomposition. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 431–441. Springer, Cham (2016). doi:10.1007/978-3-319-45823-6_40

    Chapter  Google Scholar 

  3. Drugan, M.M., Thierens, D.: Stochastic Pareto local search: Pareto neighbourhood exploration and perturbation strategies. J. Heuristics18(5), 727–766 (2012)

    Article  Google Scholar 

  4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime pareto local search. Eur. J. Oper. Res.243(2), 369–385 (2015)

    Article MathSciNet MATH  Google Scholar 

  5. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  6. Geiger, M.J.: Decision support for multi-objective flow shop scheduling by the Pareto iterated local search methodology. Comput. Ind. Eng.61(3), 805–812 (2011)

    Article  Google Scholar 

  7. Ke, L., Zhang, Q., Battiti, R.: Hybridization of decomposition and local search for multiobjective optimization. IEEE Trans. Cybern.44(10), 1808–1820 (2014)

    Article  Google Scholar 

  8. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. J. Heuristics18(2), 317–352 (2012)

    Article MATH  Google Scholar 

  9. Liefooghe, A., Verel, S., Hao, J.K.: A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming. Appl. Soft Comput.16, 10–19 (2014)

    Article  Google Scholar 

  10. Liefooghe, A., Verel, S., Paquete, L., Hao, J.K.: Experiments on local search for bi-objective unconstrained binary quadratic programming. In: 8th International Conference on Evolutionary Multi-Criterion Optimization, vol. 9018, pp. 171–186 (2015)

    Google Scholar 

  11. Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput.18(3), 450–455 (2014)

    Article  Google Scholar 

  12. Lust, T., Jaszkiewicz, A.: Speed-up techniques for solving large-scale biobjective TSP. Comput. Oper. Res.37(3), 521–533 (2010)

    Article MathSciNet MATH  Google Scholar 

  13. Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman problem. J. Heuristics16(3), 475–510 (2010)

    Article MATH  Google Scholar 

  14. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem an experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. LNE, vol. 535, pp. 177–199. Springer, Heidelberg (2004). doi:10.1007/978-3-642-17144-4_7

    Chapter  Google Scholar 

  15. Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res.156(1), 83–97 (2007)

    Article MathSciNet MATH  Google Scholar 

  16. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput.11(6), 712–731 (2007)

    Article  Google Scholar 

  17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput.7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by the National Science Foundation of China under Grant 61473241, and a grant from ANR/RCC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. A-CityU101/16), and France National Research Agency (ANR-16-CE23-0013-01).

Author information

Authors and Affiliations

  1. Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong

    Jialong Shi & Qingfu Zhang

  2. The City University of Hong Kong Shenzhen Research Institute, Shenzhen, China

    Jialong Shi & Qingfu Zhang

  3. CNRS, Centrale Lille, UMR 9189 – CRIStAL, University of Lille, 59000, Lille, France

    Bilel Derbel & Arnaud Liefooghe

  4. Dolphin, Inria Lille – Nord Europe, 59000, Lille, France

    Bilel Derbel & Arnaud Liefooghe

  5. LISIC, University Littoral Côte d’Opale, 62100, Calais, France

    Sébastien Verel

Authors
  1. Jialong Shi

    You can also search for this author inPubMed Google Scholar

  2. Qingfu Zhang

    You can also search for this author inPubMed Google Scholar

  3. Bilel Derbel

    You can also search for this author inPubMed Google Scholar

  4. Arnaud Liefooghe

    You can also search for this author inPubMed Google Scholar

  5. Sébastien Verel

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJialong Shi.

Editor information

Editors and Affiliations

  1. Southern University of Science and Technology, Shenzhen, China

    Yuhui Shi

  2. City University of Hong Kong, Hong Kong, Kowloon, Hong Kong

    Kay Chen Tan

  3. Victoria University of Wellington, Wellington, Wellington, New Zealand

    Mengjie Zhang

  4. Southern University of Science and Technology, Shenzhen, China

    Ke Tang

  5. RMIT University, Melbourne, Victoria, Australia

    Xiaodong Li

  6. City University of Hong Kong, Kowloon Tong, Hong Kong

    Qingfu Zhang

  7. Peking University, Beijing, China

    Ying Tan

  8. University of Leipzig, Leipzig, Germany

    Martin Middendorf

  9. University of Surrey, Guildford, Surrey, United Kingdom

    Yaochu Jin

Rights and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shi, J., Zhang, Q., Derbel, B., Liefooghe, A., Verel, S. (2017). Using Parallel Strategies to Speed up Pareto Local Search. In: Shi, Y.,et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_6

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp