Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Convolutional Neural Network for Pixel-Wise Skyline Detection

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 10614))

Included in the following conference series:

  • 4650Accesses

Abstract

Outdoor augmented reality applications are an emerging class of software systems that demand the fast identification of natural objects, such as plant species or mountain peaks, in low power mobile devices. Convolutional Neural Networks (CNN) have exhibited superior performance in a variety of computer vision tasks, but their training is a labor intensive task and their execution requires non negligible memory and CPU resources. This paper presents the results of training a CNN for the fast extraction of mountain skylines, which exhibits a good balance between accuracy (94,45% in best conditions and 86,87% in worst conditions), memory consumption (9,36 MB on average) and runtime execution overhead (273 ms on a Nexus 6 mobile phone), and thus has been exploited for implementing a real-world augmented reality applications for mountain peak recognition running on low to mid-end mobile phones.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Baatz, G., Saurer, O., Köser, K., Pollefeys, M.: Large scale visual geo-localization of images in mountainous terrain. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 517–530. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33709-3_37

    Chapter  Google Scholar 

  2. Baboud, L., Čadík, M., Eisemann, E., Seidel, H.P.: Automatic photo-to-terrain alignment for the annotation of mountain pictures. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 41–48. IEEE (2011)

    Google Scholar 

  3. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  4. Fedorov, R., Frajberg, D., Fraternali, P.: A framework for outdoor mobile augmented reality and its application to mountain peak detection. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 281–301. Springer, Cham (2016). doi:10.1007/978-3-319-40621-3_21

    Google Scholar 

  5. Jain, P., Manweiler, J., Roy Choudhury, R.: Overlay: practical mobile augmented reality. In: Proceedings of the 13th International Conference on Mobile Systems, Applications, and Services, pp. 331–344. ACM (2015)

    Google Scholar 

  6. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  7. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput.1(4), 541–551 (1989)

    Article  Google Scholar 

  8. Porzi, L., Rota Bulò, S., Ricci, E.: A deeply-supervised deconvolutional network for horizon line detection. In: Proceedings of ACM Multimedia Conference, pp. 137–141. ACM (2016)

    Google Scholar 

  9. Wang, R.: Edge detection using convolutional neural network. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 12–20. Springer, Cham (2016). doi:10.1007/978-3-319-40663-3_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy

    Darian Frajberg, Piero Fraternali & Rocio Nahime Torres

Authors
  1. Darian Frajberg

    You can also search for this author inPubMed Google Scholar

  2. Piero Fraternali

    You can also search for this author inPubMed Google Scholar

  3. Rocio Nahime Torres

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toDarian Frajberg.

Editor information

Editors and Affiliations

  1. University of Lausanne, Lausanne, Switzerland

    Alessandra Lintas

  2. University of Genoa, Genoa, Italy

    Stefano Rovetta

  3. Universitat Pompeu Fabra, Barcelona, Spain

    Paul F.M.J. Verschure

  4. University of Lausanne, Lausanne, Switzerland

    Alessandro E.P. Villa

Rights and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Frajberg, D., Fraternali, P., Torres, R.N. (2017). Convolutional Neural Network for Pixel-Wise Skyline Detection. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_2

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp