Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Product Space Decompositions for Continuous Representations of Brain Connectivity

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

  • 4378Accesses

Abstract

We develop a method for the decomposition of structural brain connectivity estimates into locally coherent components, leveraging a non-parametric Bayesian hierarchical mixture model with tangent Gaussian components. This model provides a mechanism to share information across subjects while still including explicit mixture distributions of connections for each subject. It further uses mixture components defined directly on the surface of the brain, eschewing the usual graph-theoretic framework of structural connectivity in favor of a continuous model that avoids a priori assumptions of parcellation configuration. The results of two experiments on a test-retest dataset are presented, to validate the method. We also provide an example analysis of the components.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Baldassano, C., et al.: Parcellating connectivity in spatial maps. PeerJ3, e784 (2015)

    Google Scholar 

  2. Fischl, B.: FreeSurfer. NeuroImage2(62), 774–781 (2012)

    Article  Google Scholar 

  3. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform8(8), 1–17 (2014)

    Google Scholar 

  4. Hinne, M., et al.: Probabilistic clustering of the human connectome identifies communities and hubs. PLoS ONE10(1), e0117179 (2015)

    Article  Google Scholar 

  5. Jbabdi, S., et al.: Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. NeuroImage44(2), 373–384 (2009)

    Article  Google Scholar 

  6. Moyer, D., Gutman, B.A., Faskowitz, J., Jahanshad, N., Thompson, P.M.: A continuous model of cortical connectivity. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 157–165. Springer, Cham (2016). doi:10.1007/978-3-319-46720-7_19

    Chapter  Google Scholar 

  7. Moyer, D., Gutman, B.A., Jahanshad, N., Thompson, P.M.: A restaurant process mixture model for connectivity based parcellation of the cortex. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 336–347. Springer, Cham (2017). doi:10.1007/978-3-319-59050-9_27

    Chapter  Google Scholar 

  8. O’Donnell, L., Westin, C.-F.: White matter tract clustering and correspondence in populations. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 140–147. Springer, Heidelberg (2005). doi:10.1007/11566465_18

    Chapter  Google Scholar 

  9. Parisot, S., et al.: Group-wise parcellation of the cortex through multi-scale spectral clustering. NeuroImage136, 68–83 (2016)

    Article  Google Scholar 

  10. de Reus, M.A., Van den Heuvel, M.P.: The parcellation-based connectome: limitations and extensions. NeuroImage80, 397–404 (2013)

    Article  Google Scholar 

  11. Straub, J., Chang, J., Freifeld, O., Fisher III., J.: A Dirichlet process mixture model for spherical data. In: Artificial Intelligence and Statistics, pp. 930–938 (2015)

    Google Scholar 

  12. Teh, Y.W., et al.: Sharing clusters among related groups: hierarchical Dirichlet processes. In: Advances in Neural Information Processing Systems (2005)

    Google Scholar 

  13. Tournier, J.D., et al.: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage42(2), 617–625 (2008)

    Article  Google Scholar 

  14. Wassermann, D., Rathi, Y., Bouix, S., Kubicki, M., Kikinis, R., Shenton, M., Westin, C.-F.: White matter bundle registration and population analysis based on gaussian processes. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 320–332. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22092-0_27

    Chapter  Google Scholar 

  15. Zuo, X.N., et al.: An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data1, 140049 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant U54 EB020403, as well as the NSF Graduate Research Fellowship Program.

Author information

Authors and Affiliations

  1. Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA

    Daniel Moyer, Boris A. Gutman, Neda Jahanshad & Paul M. Thompson

Authors
  1. Daniel Moyer

    You can also search for this author inPubMed Google Scholar

  2. Boris A. Gutman

    You can also search for this author inPubMed Google Scholar

  3. Neda Jahanshad

    You can also search for this author inPubMed Google Scholar

  4. Paul M. Thompson

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toDaniel Moyer.

Editor information

Editors and Affiliations

  1. Shanghai Jiao Tong University, Shanghai, China

    Qian Wang

  2. Nanjing University , Nanjing, China

    Yinghuan Shi

  3. Korea University , Seoul, Korea (Republic of)

    Heung-Il Suk

  4. Illinois Institute of Technology, Chicago, Illinois, USA

    Kenji Suzuki

1Electronic supplementary material

Below is the link to the electronic supplementary material.

Rights and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moyer, D., Gutman, B.A., Jahanshad, N., Thompson, P.M. (2017). Product Space Decompositions for Continuous Representations of Brain Connectivity. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_41

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp