Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Fuzzy Linguistics Supported Model to Measure the Contextual Bias in Sentiment Polarity

  • Conference paper
  • First Online:

Abstract

The polarity detection problem typically relies on experimental dictionaries, where terms are assigned polarity scores lacking contextual information. As a matter of fact, the polarity is highly dependant on the domain or community it is analysed, so we can speak of a contextual bias. We propose a method supported by fuzzy linguistic modelling to quantify this contextual bias and to enable the bias-aware sentiment analysis. To show how our approach work, we measure the bias of common concepts in two different domains and discuss the results.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Araújo, M., Gonçalves, P., Cha, M., Benevenuto, F.: iFeel: a system that compares and combines sentiment analysis methods. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 75–78. ACM (2014)

    Google Scholar 

  2. Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, vol. 10, pp. 2200–2204 (2010)

    Google Scholar 

  3. Bernabé-Moreno, J., Tejeda-Lorente, A., Porcel, C., Fujita, H., Herrera-Viedma, E.: Caresome: a system to enrich marketing customers acquisition and retention campaigns using social media information. Knowl. Based Syst.80, 163–179 (2015)

    Article  Google Scholar 

  4. Bernabé-Moreno, J., Tejeda-Lorente, A., Porcel, C., Fujita, H., Herrera-Viedma, E.: Emotional profiling of locations based on social media. Procedia Comput. Sci.55, 960–969 (2015)

    Article  Google Scholar 

  5. Cambria, E., Poria, S., Bajpai, R., Schuller, B.: Senticnet 4: a semantic resource for sentiment analysis based on conceptual primitives. In: the 26th International Conference on Computational Linguistics (COLING), Osaka (2016)

    Google Scholar 

  6. Daku, M., Soroka, S., Young, L.: Lexicoder, version 2.0 (software). McGill University, Montreal (2011)

    Google Scholar 

  7. Dodds, P.S., Danforth, C.M.: Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud.11(4), 441–456 (2010)

    Article  Google Scholar 

  8. Gonçalves, P., Araújo, M., Benevenuto, F., Cha, M.: Comparing and combining sentiment analysis methods. In: Proceedings of the First ACM Conference on Online Social Networks, pp. 27–38. ACM (2013)

    Google Scholar 

  9. Greaves, F., Ramirez-Cano, D., Millett, C., Darzi, A., Donaldson, L.: Use of sentiment analysis for capturing patient experience from free-text comments posted online. J. Med. Internet Res.15(11), e239 (2013)

    Article  Google Scholar 

  10. Herrera, F., Herrera-Viedma, E.: Aggregation operators for linguistic weighted information. IEEE Trans. Syst. Man Cybern. Part A Syst.27, 646–656 (1997)

    Article  Google Scholar 

  11. Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst.8(6), 746–752 (2000)

    Article  Google Scholar 

  12. Herrera, F., Martínez, L.: A model based on linguistic 2-tuples for dealing with multigranularity hierarchical linguistic contexts in multiexpert decision-making. IEEE Trans. Syst. Man Cybern. Part B Cybern.31(2), 227–234 (2001)

    Article  Google Scholar 

  13. Herrera, F., Herrera-Viedma, E., Alonso, S., Chiclana, F.: Computing with words and decision making. Fuzzy Optim. Decis. Mak.8(4), 323–324 (2009)

    Article MathSciNet MATH  Google Scholar 

  14. Hu, M., Liu, B.: Mining opinion features in customer reviews. AAAI4, 755–760 (2004)

    Google Scholar 

  15. Ieong, S., Mishra, N., Sadikov, E., Zhang, L.: Domain bias in web search. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 413–422. ACM (2012)

    Google Scholar 

  16. Iqbal, M., Karim, A., Kamiran, F.: Bias-aware lexicon-based sentiment analysis. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 845–850. ACM (2015)

    Google Scholar 

  17. Jockers, M.L.: Revealing Sentiment and Plot Arcs with the Syuzhet Package, February 2015

    Google Scholar 

  18. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count: LIWC 2001, vol. 71. Lawrence Erlbaum Associates, Mahway (2001)

    Google Scholar 

  19. Polanyi, L., Zaenen, A.: Contextual valence shifters. In: Computing Attitude and Affect in Text: Theory and Applications, pp. 1–10. Springer, Dordrecht (2006)

    Google Scholar 

  20. Salter-Townshend, M., Murphy, T.B.: Mixtures of biased sentiment analysers. Adv. Data Anal. Classif.8(1), 85–103 (2014)

    Article MathSciNet  Google Scholar 

  21. Schmid, H.: Improvements in part-of-speech tagging with an application to German. In: Proceedings of the ACL SIGDAT-Workshop. Citeseer (1995)

    Google Scholar 

  22. Thelwall, M.: Heart and soul: sentiment strength detection in the social web with sentistrength. In: Proceedings of the CyberEmotions, pp. 1–14 (2013)

    Google Scholar 

  23. Wadbude, R., Gupta, V., Mekala, D., Jindal, J., Karnick, H.: User bias removal in fine grained sentiment analysis. arXiv preprintarXiv:1612.06821 (2016)

  24. Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A system for real-time twitter sentiment analysis of 2012 US presidential election cycle. In: Proceedings of the ACL 2012 System Demonstrations, pp. 115–120. Association for Computational Linguistics (2012)

    Google Scholar 

  25. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the panas scales. J. Pers. Soc. Psychol.54(6), 1063 (1988)

    Article  Google Scholar 

  26. West, R., Paskov, H.S., Leskovec, J., Potts, C.: Exploiting social network structure for person-to-person sentiment analysis. arXiv preprintarXiv:1409.2450 (2014)

  27. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity: an exploration of features for phrase-level sentiment analysis. Comput. Linguist.35(3), 399–433 (2009)

    Article  Google Scholar 

  28. Zadeh, L.: The concept of a linguistic variable and its applications to approximate reasoning. Part I Inf. Sci.8, 199–249 (1975). Part II Inf. Sci.8, 301–357 (1975), Part III Inf. Sci.9, 43–80 (1975)

    Google Scholar 

Download references

Acknowledgments

This paper has been developed with the FEDER financing under Projects TIN2013-40658-P and TIN2016-75850-R.

Author information

Authors and Affiliations

  1. Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain

    Juan Bernabé-Moreno, Alvaro Tejeda-Lorente & Enrique Herrera-Viedma

  2. Department of Computer Science, University of Jaén, Jaén, Spain

    Carlos Porcel

Authors
  1. Juan Bernabé-Moreno

    You can also search for this author inPubMed Google Scholar

  2. Alvaro Tejeda-Lorente

    You can also search for this author inPubMed Google Scholar

  3. Carlos Porcel

    You can also search for this author inPubMed Google Scholar

  4. Enrique Herrera-Viedma

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toEnrique Herrera-Viedma.

Editor information

Editors and Affiliations

  1. Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

    Janusz Kacprzyk

  2. Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

    Eulalia Szmidt

  3. Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

    Sławomir Zadrożny

  4. Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria

    Krassimir T. Atanassov

  5. WIT - Warsaw School of Information Technology, Warsaw, Poland

    Maciej Krawczak

Rights and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bernabé-Moreno, J., Tejeda-Lorente, A., Porcel, C., Herrera-Viedma, E. (2018). A Fuzzy Linguistics Supported Model to Measure the Contextual Bias in Sentiment Polarity. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds) Advances in Fuzzy Logic and Technology 2017. EUSFLAT IWIFSGN 2017 2017. Advances in Intelligent Systems and Computing, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-66830-7_19

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp