Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Improved Distance Sensitivity Oracles via Tree Partitioning

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 10389))

Included in the following conference series:

Abstract

We introduce an improved structure ofdistance sensitivity oracle (DSO). The task is to pre-process a non-negatively weighted graph so that a data structure can quickly answer replacement path length for every triple of source, terminal and failed vertex. The previous best algorithm [Bernstein and Karger, 2009] constructs in time (\(\tilde{O}(\cdot )\) suppresses poly-logarithmic factors.)\(\tilde{O}(mn)\) a distance sensitivity oracle of size\(O(n^2\log n)\) that processes queries inO(1) time. As an improvement, our oracle takes up\(O(n^2)\) space, while preservingO(1) query efficiency and\(\tilde{O}(mn)\) preprocessing time. One should notice that space complexity and query time of our novel data structure are asymptotically optimal.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, I., Chechik, S., Gavoille, C.: Fully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels. In: Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp. 1199–1218. ACM, New York (2012).http://doi.acm.org/10.1145/2213977.2214084

  2. Abraham, I., Chechik, S., Krinninger, S.: Fully dynamic all-pairs shortest paths with worst-case update-time revisited. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 440–452. SIAM (2017)

    Google Scholar 

  3. Abraham, I., Chechik, S., Talwar, K.: Fully dynamic all-pairs shortest paths: breaking the\(o(n)\) barrier. In: APPROX-RANDOM, pp. 1–16 (2014)

    Google Scholar 

  4. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradžev, I.A.: On economical construction of the transitive closure of a directed graph. Soviet Mathematics-Doklady11(5), 1209–1210 (1970)

    MATH  Google Scholar 

  5. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theoretical Computer Science321(1), 5–12 (2004)

    Article MathSciNet MATH  Google Scholar 

  6. Bernstein, A., Karger, D.: Improved distance sensitivity oracles via random sampling. In: Proceedings 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 34–43 (2008)

    Google Scholar 

  7. Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding failed vertices and edges. In: Proceedings 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 101–110 (2009)

    Google Scholar 

  8. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance oracles and routing schemes. Algorithmica63(4), 861–882 (2012).http://dx.doi.org/10.1007/s00453-011-9543-0

    Article MathSciNet MATH  Google Scholar 

  9. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. J. ACM51(6), 968–992 (2004)

    Article MathSciNet MATH  Google Scholar 

  10. Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput.37(5), 1299–1318 (2008)

    Article MathSciNet MATH  Google Scholar 

  11. Demetrescu, C., Italiano, G.F.: Fully dynamic all pairs shortest paths with real edge weights. J. Comput. Syst. Sci.72(5), 813–837 (2006).http://dx.doi.org/10.1016/j.jcss.2005.05.005

    Article MathSciNet MATH  Google Scholar 

  12. Demetrescu, C., Thorup, M.: Oracles for distances avoiding a link-failure. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2002, pp. 838–843. Society for Industrial and Applied Mathematics, Philadelphia (2002).http://dl.acm.org/citation.cfm?id=545381.545490

  13. Duan, R., Pettie, S.: Dual-failure distance and connectivity oracles. In: Proceedings 20th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 506–515 (2009)

    Google Scholar 

  14. Fredman, M.L., Willard, D.E.: Surpassing the information-theoretic bound with fusion trees. J. Comput. Syst. Sci.47(3), 424–436 (1993)

    Article MathSciNet MATH  Google Scholar 

  15. Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-source replacement paths. In: FOCS, pp. 748–757. IEEE Computer Society (2012).http://dblp.uni-trier.de/db/conf/focs/focs2012.html#GrandoniW12

  16. Henzinger, M., Krinninger, S., Nanongkai, D.: Dynamic approximate all-pairs shortest paths: breaking the o(mn) barrier and derandomization. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Proceedings. IEEE, Los Alamitos, October 2013.http://eprints.cs.univie.ac.at/3747/

  17. Henzinger, M., Krinninger, S., Nanongkai, D.: Sublinear-time decremental algorithms for single-source reachability and shortest paths on directed graphs. In: 46th ACM Symposium on Theory of Computing (STOC 2014), June 2014.http://eprints.cs.univie.ac.at/4042/

  18. Henzinger, M., Krinninger, S., Nanongkai, D.: A subquadratic-time algorithm for decremental single-source shortest paths. In: SODA 2014. SIAM, Philadelphia, January 2014.http://eprints.cs.univie.ac.at/3785/

  19. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: what is an edge worth?. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 252–259 (2001). erratum, Proceedings of 43rd FOCS, p. 809, 2002

    Google Scholar 

  20. Khanna, N., Baswana, S.: Approximate shortest paths avoiding a failed vertex: optimal size data structures for unweighted graphs. In: 27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010, March 4–6, 2010, Nancy, France, pp. 513–524 (2010).http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2481

  21. Patrascu, M., Roditty, L.: Distance oracles beyond the thorup-zwick bound. In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS 2010, pp. 815–823. IEEE Computer Society, Washington, DC (2010).http://dx.doi.org/10.1109/FOCS.2010.83

  22. Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths. In: Proceedings 37th ACM Symposium on Theory of Computing (STOC), pp. 112–119 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Tsinghua University, Beijing, China

    Ran Duan & Tianyi Zhang

Authors
  1. Ran Duan

    You can also search for this author inPubMed Google Scholar

  2. Tianyi Zhang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toTianyi Zhang.

Editor information

Editors and Affiliations

  1. Computer Science, University of Toronto , Toronto, Ontario, Canada

    Faith Ellen

  2. Computer Science, Memorial University of Newfoundland , St. John’s, Newfoundland and Labrador, Canada

    Antonina Kolokolova

  3. Carleton University, Ottawa, Ontario, Canada

    Jörg-Rüdiger Sack

Rights and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Duan, R., Zhang, T. (2017). Improved Distance Sensitivity Oracles via Tree Partitioning. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_30

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp