Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 10389))
Included in the following conference series:
1646Accesses
Abstract
Online graph problems are considered in models where the irrevocability requirement is relaxed. Motivated by practical examples where, for example, there is a cost associated with building a facility and no extra cost associated with doing it later, we consider the Late Accept model, where a request can be accepted at a later point, but any acceptance is irrevocable. Similarly, we also consider a Late Reject model, where an accepted request can later be rejected, but any rejection is irrevocable (this is sometimes called preemption). Finally, we consider the Late Accept/Reject model, where late accepts and rejects are both allowed, but any late reject is irrevocable. For Independent Set, the Late Accept/Reject model is necessary to obtain a constant competitive ratio, but for Vertex Cover the Late Accept model is sufficient and for Minimum Spanning Forest the Late Reject model is sufficient. The Matching problem has a competitive ratio of 2, but in the Late Accept/Reject model, its competitive ratio is \(\frac{3}{2}\).
Supported in part by the Danish Council for Independent Research, Natural Sciences, grant DFF-1323-00247, and the Villum Foundation, grant VKR023219.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 5719
- Price includes VAT (Japan)
- Softcover Book
- JPY 7149
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartal, Y., Fiat, A., Leonardi, S.: Lower bounds for on-line graph problems with application to on-line circuit and optical routing. In: 28th STOC, pp. 531–540. ACM (1996)
Boyar, J., Eidenbenz, S.J., Favrholdt, L.M., Kotrbčík, M., Larsen, K.S.: Online dominating set. In: 15th SWAT, LIPIcs, vol. 53, pp. 21:1–21:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH (2016)
Boyar, J., Favrholdt, L.M., Kotrbčík, M., Larsen, K.S.: Relaxing the irrevocability requirements for online graph algorithms. Technical ReportarXiv:1704.08835 [cs.DS], arXiv (2017)
Cygan, M., Jeż, Ł., Sgall, J.: Online knapsack revisited. Theor. Comput. Syst.58(1), 153–190 (2016)
Demange, M., Paschos, V.T.: On-line vertex-covering. Theor. Comput. Sci.332, 83–108 (2005)
Epstein, L., Levin, A., Mestre, J., Segev, D.: Improved approximation guarantees for weighted matching in the semi-streaming model. SIAM J. Discrete Math.25(3), 1251–1265 (2011)
Epstein, L., Levin, A., Segev, D., Weimann, O.: Improved bounds for online preemptive matching. In: 30th STACS, LIPIcs, vol. 20, pp. 389–399. Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH (2013)
Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theor. Comput. Sci.348(2–3), 207–216 (2005)
Garay, J.A., Gopal, I.S., Kutten, S., Mansour, Y., Yung, M.: Efficient on-line call control algorithms. J. Algorithm.23(1), 180–194 (1997)
Gu, A., Gupta, A., Kumar, A.: The power of deferral: Maintaining a constant-competitive steiner tree online. SIAM J. Comput.45(1), 1–28 (2016)
Gupta, A., Kumar, A.: Online steiner tree with deletions. In: 25th SODA, pp. 455–467 (2014)
Han, X., Kawase, Y., Makino, K.: Randomized algorithms for online knapsack problems. Theor. Comput. Sci.562, 395–405 (2015)
Han, X., Kawase, Y., Makino, K., Guo, H.: Online removable knapsack problem under convex function. Theor. Comput. Sci.540, 62–69 (2014)
Han, X., Makino, K.: Online minimization knapsack problem. Theor. Comput. Sci.609, 185–196 (2016)
Imase, M., Waxman, B.M.: Dynamic steiner tree problem. SIAM J. Discrete Math.4(3), 369–384 (1991)
Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 293–305. Springer, Heidelberg (2002). doi:10.1007/3-540-45465-9_26
Jaillet, P., Lu, X.: Online traveling salesman problems with rejection options. Networks64, 84–95 (2014)
Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica3, 79–119 (1988)
Komm, D., Královič, R., Královič, R., Kudahl, C.: Advice complexity of the online induced subgraph problem. In: 41st MFCS, LIPIcs, vol. 58, pp. 59:1–59:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. Ann. Discrete Math.2, 65–74 (1978)
Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online MST and TSP. SIAM J. Comput.45(3), 859–880 (2016)
Rawitz, D., Rosén, A.: Online budgeted maximum coverage. In: 24th ESA, LIIPCcs, vol. 57, pp. 73:1–73:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH (2016)
Saha, B., Getoor, L.: On maximum coverage in the streaming model & application to multi-topic blog-watch. In: 9th SDM, pp. 697–708. SIAM (2009)
Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM28(2), 202–208 (1985)
Tarjan, R.E.: Data structures and network algorithms. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 44. SIAM (1983)
Vinkemeier, D.E.D., Hougardy, S.: A linear-time approximation algorithm for weighted matchings in graphs. ACM T. Algorithms1(1), 107–122 (2005)
Author information
Authors and Affiliations
University of Southern Denmark, Odense, Denmark
Joan Boyar, Lene M. Favrholdt & Kim S. Larsen
The University of Queensland, Brisbane, Australia
Michal Kotrbčík
- Joan Boyar
You can also search for this author inPubMed Google Scholar
- Lene M. Favrholdt
You can also search for this author inPubMed Google Scholar
- Michal Kotrbčík
You can also search for this author inPubMed Google Scholar
- Kim S. Larsen
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toKim S. Larsen.
Editor information
Editors and Affiliations
Computer Science, University of Toronto , Toronto, Ontario, Canada
Faith Ellen
Computer Science, Memorial University of Newfoundland , St. John’s, Newfoundland and Labrador, Canada
Antonina Kolokolova
Carleton University, Ottawa, Ontario, Canada
Jörg-Rüdiger Sack
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Boyar, J., Favrholdt, L.M., Kotrbčík, M., Larsen, K.S. (2017). Relaxing the Irrevocability Requirement for Online Graph Algorithms. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_19
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-319-62126-5
Online ISBN:978-3-319-62127-2
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative