Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Using Feature Clustering for GP-Based Feature Construction on High-Dimensional Data

  • Conference paper
  • First Online:
Genetic Programming(EuroGP 2017)

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 10196))

Included in the following conference series:

Abstract

Feature construction is a pre-processing technique to create new features with better discriminating ability from the original features. Genetic programming (GP) has been shown to be a prominent technique for this task. However, applying GP to high-dimensional data is still challenging due to the large search space. Feature clustering groups similar features into clusters, which can be used for dimensionality reduction by choosing representative features from each cluster to form the feature subset. Feature clustering has been shown promising in feature selection; but has not been investigated in feature construction for classification. This paper presents the first work of utilising feature clustering in this area. We propose a cluster-based GP feature construction method called CGPFC which uses feature clustering to improve the performance of GP for feature construction on high-dimensional data. Results on eight high-dimensional datasets with varying difficulties show that the CGPFC constructed features perform better than the original full feature set and features constructed by the standard GP constructor based on the whole feature set.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Zhang, J., Wang, S., Chen, L., Gallinari, P.: Multiple Bayesian discriminant functions for high-dimensional massive data classification. Data Min. Knowl. Discov.31, 465–501 (2017)

    Article MathSciNet  Google Scholar 

  2. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspective. Kluwer Academic Publishers, Norwell (1998)

    Book MATH  Google Scholar 

  3. Krawiec, K.: Evolutionary feature selection and construction. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 353–357. Springer, Heidelberg (2010)

    Google Scholar 

  4. Neshatian, K., Zhang, M., Andreae, P.: A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming. IEEE Trans. Evol. Comput.16, 645–661 (2012)

    Article  Google Scholar 

  5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Hiroyasu, T., Shiraishi, T., Yoshida, T., Yamamoto, U.: A feature transformation method using multiobjective genetic programming for two-class classification. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2989–2995 (2015)

    Google Scholar 

  7. Ahmed, S., Zhang, M., Peng, L., Xue, B.: Multiple feature construction for effective biomarker identification and classification using genetic programming. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 249–256. ACM (2014)

    Google Scholar 

  8. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and selection in classification on high-dimensional data. Memetic Comput.8, 3–15 (2015)

    Article  Google Scholar 

  9. Tran, B., Xue, B., Zhang, M.: Multiple feature construction in high-dimensional data using genetic programming. In: IEEE Symposium Series on Computational Intelligence (SSCI) (2016)

    Google Scholar 

  10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res.3, 1157–1182 (2003)

    MATH  Google Scholar 

  11. Butterworth, R., Piatetsky-Shapiro, G., Simovici, D.A.: On feature selection through clustering. In: ICDM, vol. 5, pp. 581–584 (2005)

    Google Scholar 

  12. Gupta, A., Gupta, A., Sharma, K.: Clustering based feature selection methods from fMRI data for classification of cognitive states of the human brain. In: 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 3581–3584. IEEE (2016)

    Google Scholar 

  13. Jaskowiak, P.A., Campello, R.J.: A cluster based hybrid feature selection approach. In: Brazilian Conference on Intelligent Systems (BRACIS), pp. 43–48. IEEE (2015)

    Google Scholar 

  14. Krier, C., François, D., Rossi, F., Verleysen, M.: Feature clustering and mutual information for the selection of variables in spectral data. In: European Symposium on Artificial Neural Networks (ESANN), Le Chesnay Cedex, France, pp. 157–162 (2007)

    Google Scholar 

  15. Rostami, M., Moradi, P.: A clustering based genetic algorithm for feature selection. In: Conference on Information and Knowledge Technology, pp. 112–116 (2014)

    Google Scholar 

  16. Ahmed, S., Zhang, M., Peng, L.: Feature selection and classification of high dimensional mass spectrometry data: a genetic programming approach. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds.) EvoBIO 2013. LNCS, vol. 7833, pp. 43–55. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37189-9_5

    Chapter  Google Scholar 

  17. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput.20, 606–626 (2016)

    Article  Google Scholar 

  18. Nag, K., Pal, N.: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification. IEEE Trans. Cybern.46, 499–510 (2016)

    Article  Google Scholar 

  19. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci.2, 165–193 (2015)

    Article  Google Scholar 

  20. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.16, 645–678 (2005)

    Article  Google Scholar 

  21. Lane, M.C., Xue, B., Liu, I., Zhang, M.: Gaussian based particle swarm optimisation and statistical clustering for feature selection. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 133–144. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44320-0_12

    Google Scholar 

  22. Nguyen, H.B., Xue, B., Liu, I., Zhang, M.: PSO and statistical clustering for feature selection: a new representation. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 569–581. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13563-2_48

    Google Scholar 

  23. Song, Q., Ni, J., Wang, G.: A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans. Knowl. Data Eng.25, 1–14 (2013)

    Article  Google Scholar 

  24. Hsu, H.H., Hsieh, C.W.: Feature selection via correlation coefficient clustering. J. Softw.5, 1371–1377 (2010)

    Google Scholar 

  25. Xu, R.F., Lee, S.J.: Dimensionality reduction by feature clustering for regression problems. Inf. Sci.299, 42–57 (2015)

    Article MathSciNet  Google Scholar 

  26. Press, W.H., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C, vol. 1, p. 3. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  27. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., Burlington (1993)

    Google Scholar 

  28. Liu, H., Motoda, H.: Computational Methods of Feature Selection. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  29. Pledger, S., Arnold, R.: Multivariate methods using mixtures: correspondence analysis, scaling and pattern-detection. Comput. Stat. Data Anal.71, 241–261 (2014)

    Article MathSciNet  Google Scholar 

  30. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Thirteenth International Joint Conference on Artificial Intelligence, vol. 2, pp. 1022–1027. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  31. Patterson, G., Zhang, M.: Fitness functions in genetic programming for classification with unbalanced data. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 769–775. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76928-6_90

    Chapter  Google Scholar 

  32. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol.3, 185–205 (2005)

    Article  Google Scholar 

  33. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull.1, 80–83 (1945)

    Article  Google Scholar 

  34. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math.20, 53–65 (1987)

    Article MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand

    Binh Tran, Bing Xue & Mengjie Zhang

Authors
  1. Binh Tran

    You can also search for this author inPubMed Google Scholar

  2. Bing Xue

    You can also search for this author inPubMed Google Scholar

  3. Mengjie Zhang

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toBinh Tran orBing Xue.

Editor information

Editors and Affiliations

  1. University College Dublin , Dublin, Ireland

    James McDermott

  2. Universidade Nova de Lisboa , Lisbon, Portugal

    Mauro Castelli

  3. Brno University of Technology , Brno, Czech Republic

    Lukas Sekanina

  4. Vrije Universiteit Amsterdam , Amsterdam, The Netherlands

    Evert Haasdijk

  5. University of Cádiz , Cádiz, Spain

    Pablo García-Sánchez

Rights and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tran, B., Xue, B., Zhang, M. (2017). Using Feature Clustering for GP-Based Feature Construction on High-Dimensional Data. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_14

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp