Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Learning and Reasoning with Logic Tensor Networks

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 10037))

Included in the following conference series:

Abstract

The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic is based on full first order language. Terms are interpreted inn-dimensional feature vectors, while predicates are interpreted in fuzzy sets. In real logic it is possible to formally define the following two tasks: (i) learning from data in presence of logical constraints, and (ii) reasoning on formulas exploiting concrete data. We implement real logic in an deep learning architecture, called logic tensor networks, based on Google’s\(\textsc {TensorFlow}^{\tiny {\text {TM}}}\) primitives. The paper concludes with experiments on a simple but representative example of knowledge completion.

The first author acknowledges the Mobility Program of FBK, for supporting a long term visit at City University London. He also acknowledges NVIDIA Corporation for supporting this research with the donation of a GPU. We also thank Prof. Marco Gori and his group at the University of Siena for the generous and inspiring discussions on the topic of integrating logical reasoning and statistical machine learning.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    In logic, the term “grounding” indicates the operation of replacing the variables of a term/formula with constants, or terms that do not contains other variables. To avoid confusion, we use the synonym “instantiation” for this sense.

  2. 2.
  3. 3.

    Normally, a probabilistic approach is taken to solve this problem, and one that requires instantiating all clauses to remove variables, essentially turning the problem into a propositional one;ltn takes a different approach.

  4. 4.

    Notice how no grounding is provided about the signature of the knowledge-base.

  5. 5.

    A smoth factor\(\lambda ||\mathbf {\Omega }||^2_2\) is added to the loss to limit the size of parameters.

  6. 6.

    \(\mu (a,b) = \min (1,a+b)\).

References

  1. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn.2, 1–127 (2009)

    Article MATH  Google Scholar 

  2. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep neural networks and tree search. Nature529, 484–503 (2016)

    Article  Google Scholar 

  3. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer36, 41–50 (2003)

    Article  Google Scholar 

  4. Kiela, D., Bottou, L.: Learning image embeddings using convolutional neural networks for improved multi-modal semantics. In: Proceedings of EMNLP 2014 (2014)

    Google Scholar 

  5. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Advances in Neural Information Processing Systems, pp. 926–934 (2013)

    Google Scholar 

  6. Guha, R.: Towards a model theory for distributed representations. In: 2015 AAAI Spring Symposium Series (2015)

    Google Scholar 

  7. Bottou, L.: From machine learning to machine reasoning. Technical report,arXiv.1102.1808 (2011)

  8. d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M.: Neural-Symbolic Cognitive Reasoning. Cognitive Technologies. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  9. Diligenti, M., Gori, M., Maggini, M., Rigutini, L.: Bridging logic and kernel machines. Mach. Learn.86, 57–88 (2012)

    Article MathSciNet MATH  Google Scholar 

  10. Barrett, L., Feldman, J., MacDermed, L.: A (somewhat) new solution to the variable binding problem. Neural Comput.20, 2361–2378 (2008)

    Article MATH  Google Scholar 

  11. Bergmann, M.: An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems. Cambridge University Press, New York (2008)

    Book MATH  Google Scholar 

  12. TensorFlow: Large-scale machine learning on heterogeneous systems (2016).tensorflow.org

  13. d’Avila Garcez, A.S., Gori, M., Hitzler, P., Lamb, L.C.: Neural-symbolic learning and reasoning (dagstuhl seminar 14381). Dagstuhl Rep.4, 50–84 (2014)

    Google Scholar 

  14. McCallum, A., Gabrilovich, E., Guha, R., Murphy, K. (eds.): Knowledge representation and reasoning: integrating symbolic and neural approaches. In: AAAI Spring Symposium, Stanford University, CA, USA (2015)

    Google Scholar 

  15. Besold, T.R., d’Avila Garcez, A., Marcus, G.F., Miikulainen, R. (eds.): Cognitive computation: integrating neural and symbolic approaches. In: Workshop at NIPS 2015, Montreal, Canada, CEUR-WS 1583, April 2016

    Google Scholar 

  16. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems. Cambridge University Press, New York (2004)

    Book MATH  Google Scholar 

  17. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res.3, 993–1022 (2003)

    MATH  Google Scholar 

  18. Brys, T., Drugan, M.M., Bosman, P.A., De Cock, M., Nowé, A.: Solving satisfiability in fuzzy logics by mixing CMA-ES. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 1125–1132. ACM, New York (2013)

    Google Scholar 

  19. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn.62, 107–136 (2006)

    Article  Google Scholar 

  20. Tieleman, T., Hinton, G.: Lecture 6.5 - RMSProp, COURSERA: Neural networks for machine learning. Technical report (2012)

    Google Scholar 

  21. Wang, J., Domingos, P.M.: Hybrid markov logic networks. In: AAAI, pp. 1106–1111 (2008)

    Google Scholar 

  22. Nath, A., Domingos, P.M.: Learning relational sum-product networks. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25–30, 2015, Austin, Texas, USA, pp. 2878–2886 (2015)

    Google Scholar 

  23. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice-Hall Inc., Upper Saddle River (1992)

    MATH  Google Scholar 

  24. Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: probabilistic models with unknown objects. In: IJCAI 2005, pp. 1352–1359 (2005)

    Google Scholar 

  25. Raedt, L.D., Kersting, K., Natarajan, S., Poole, D.: Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool, San Rafael (2016)

    MATH  Google Scholar 

  26. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn.100, 49–73 (2015)

    Article MathSciNet MATH  Google Scholar 

  27. França, M.V.M., Zaverucha, G., d’Avila Garcez, A.S.: Fast relational learning using bottom clause propositionalization with artificial neural networks. Mach. Learn.94, 81–104 (2014)

    Article MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Fondazione Bruno Kessler, Trento, Italy

    Luciano Serafini

  2. City University London, London, UK

    Artur S. d’Avila Garcez

Authors
  1. Luciano Serafini

    You can also search for this author inPubMed Google Scholar

  2. Artur S. d’Avila Garcez

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toLuciano Serafini.

Editor information

Editors and Affiliations

  1. University of Genoa , Genova, Italy

    Giovanni Adorni

  2. University of Parma , Parma, Italy

    Stefano Cagnoni

  3. University of Siena , Siena, Italy

    Marco Gori

  4. University of Genova , Genova, Italy

    Marco Maratea

Rights and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Serafini, L., d’Avila Garcez, A.S. (2016). Learning and Reasoning with Logic Tensor Networks. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds) AI*IA 2016 Advances in Artificial Intelligence. AI*IA 2016. Lecture Notes in Computer Science(), vol 10037. Springer, Cham. https://doi.org/10.1007/978-3-319-49130-1_25

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp