Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 9855))
Included in the following conference series:
2171Accesses
27Citations
Abstract
To meet the transportation demand and maintain sustainable development, many countries are aiming to promote the competitive position of inland waterway shipping in the transport system. Autonomous transport is seen as a possibility for maritime transport to meet today’s and tomorrow’s challenges. In realizing autonomous navigation, path planning plays an important role. Being the most widely used path planning algorithm for robotics and land-based vehicles, in this paper we analyze A* and its extensions for waterborne applications. We hereby exploit the fact that for vessels optimal paths typically have heading changes only at the corners of obstacles to propose a more efficient modified A* algorithm, A*BG, for autonomous inland vessels. Two locations where ship accidents frequently occur are considered in simulation experiments, in which the performance of A*, A*PS, Theta* and A*BG are compared.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 5719
- Price includes VAT (Japan)
- Softcover Book
- JPY 7149
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, pp. 323–333. Springer, New York (2008)
Campbell, S., Naeem, W., Irwin, G.: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Ann. Rev. Control36(2), 267–283 (2012)
Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res.39(2010), 533–579 (2010)
Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., Jurišica, L.: Path planning with modified a star algorithm for a mobile robot. Procedia Eng.96, 59–69 (2014)
Economic commission for Europe: inventory of most important bottlenecks and missing links in the E waterway network. Technical report. ECE/TRANS/SC.3/159/Rev.1, Economic Commission for Europe, Inland Transport Committee, United Nations (2013)
European Commission: Naiades II: Towards quality inland waterway transport. Technical report COM 623, European Commission (2013)
European Commission: The European Union explained: Transport. Technical report European Commission (2014)
Froese, J.: Safe and efficient port approach by vessel traffic management in waterways. In: Ocampo-Martinez, C., Negenborn, R.R. (eds.) Transport of Water versus Transport over Water. Operations Research/Computer Science Interfaces Series, vol. 58, pp. 281–296. Springer, New York (2015)
Google Maps: Port of Rotterdam, Street map (2016).https://www.google.nl/maps/@51.8820487,4.4343202,10.75z
Hekkenberg, R.: Technological challenges and developments in European inland waterway transport. In: Ocampo-Martinez, C., Negenborn, R.R. (eds.) Transport of Water versus Transport over Water. Operations Research/Computer Science Interfaces Series, vol. 58, pp. 297–313. Springer, New York (2015)
Kuwata, Y., Wolf, M., Zarzhitsky, D., Huntsberger, T.: Safe maritime autonomous navigation with COLREGS using velocity obstacles. IEEE J. Oceanic Eng.39(1), 110–119 (2014)
Lazarowska, A.: Ship’s trajectory planning for collision avoidance at sea based on ant colony optimisation. J. Navig.68(2), 291–307 (2015)
Li, S., Negenborn, R.R., Lodewijks, G.: Distributed constraint optimization for addressing vessel rotation planning problems. Eng. Appl. Artif. Intell.48(2016), 159–172 (2016)
Movares Projectteam MNV’13: Monitoring nautische veiligheid 2013. Technical report, Rijkswaterstaat Water, Verkeer en Leefomgeving, Afdeling Veiligheidsmanagement en Verkeersveiligheid (2013)
Rijkswaterstaat: Binnenvaartpolitiereglement (1983).http://wetten.overheid.nl/BWBR0003628/2016-01-01#DeelI_Hoofdstuk6_AfdelingI_Artikel6.01
Rijkswaterstaat: Scheepsongevallen significant (2016).https://geoweb.rijkswaterstaat.nl/westnederlandnoord/GeoWeb41/?Viewer=WNN_Scheepsongevallen
Rijkswaterstaat: Scheepsongevallendatabase (2016).https://www.rijkswaterstaat.nl/zakelijk/verkeersmanagement/scheepvaart/scheepsongevallenregistratie/index.aspx
Sariff, N., Buniyamin, N.: An overview of autonomous mobile robot path planning algorithms. In: Proceedings of the 4th Student Conference on Research and Development, pp. 183–188. Selangor, Malaysia (2006)
Shah, B.C., Švec, P., Bertaska, I.R., Sinisterra, A.J., Klinger, W., Ellenrieder, K., Dhanak, M., Gupta, S.K.: Resolution-adaptive risk-aware trajectory planning for surface vehicles operating in congested civilian traffic. Autonomous Robots, first Online (2015)
Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots, 2nd edn. MIT Press, Cambridge (2011)
Statheros, T., Howells, G., Maier, K.M.: Autonomous ship collision avoidance navigation concepts, technologies and techniques. J. Navig.61(1), 129–142 (2008)
Uras, T., Koenig, S.: An empirical comparison of any-angle path-planning algorithms. In: Proceedings of the 8th Annual Symposium on Combinatorial Search, pp. 206–210. Ein Gedi, Israel (2015)
Vaneck, T.W.: Fuzzy guidance controller for an autonomous boat. IEEE Control Syst. Mag.17(2), 43–51 (1997)
Vantorre, M., Delefortrie, G., Eloot, K., Laforce, E.: Experimental investigation of ship-bank interaction forces. In: Proceedings of International Conference on Marine Simulation and Ship Maneuverability, pp. 1–9. Kanazawa, Japan (2003)
Verstichel, J., Causmaecker, P.D., Spieksma, F., Berghe, G.V.: The generalized lock scheduling problem: an exact approach. Trans. Res. Part E: Logistics Transp. Rev.65, 16–34 (2014)
Xin, J., Negenborn, R.R., Corman, F., Lodewijks, G.: Control of interacting machines in automated container terminals using a sequential planning approach for collision avoidance. Transp. Res. Part C: Emerg. Technol.60(2015), 377–396 (2015)
Zheng, H., Negenborn, R.R., Lodewijks, G.: Predictive path following with arrival time awareness for waterborne AGVs. Transportation Research Part C: Emerging Technologies (2015).http://dx.doi.org/10.1016/j.trc.2015.11.004
Acknowledgment
This research is supported by the China Scholarship Council under Grant 201426950041.
Author information
Authors and Affiliations
Department of Maritime and Transport Technology, Delft University of Technology, Delft, The Netherlands
Linying Chen, Rudy R. Negenborn & Gabriel Lodewijks
- Linying Chen
Search author on:PubMed Google Scholar
- Rudy R. Negenborn
Search author on:PubMed Google Scholar
- Gabriel Lodewijks
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toLinying Chen.
Editor information
Editors and Affiliations
Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
Ana Paias
University of Vienna , Vienna, Austria
Mario Ruthmair
University of Hamburg , Hamburg, Hamburg, Germany
Stefan Voß
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, L., Negenborn, R.R., Lodewijks, G. (2016). Path Planning for Autonomous Inland Vessels Using A*BG. In: Paias, A., Ruthmair, M., Voß, S. (eds) Computational Logistics. ICCL 2016. Lecture Notes in Computer Science(), vol 9855. Springer, Cham. https://doi.org/10.1007/978-3-319-44896-1_5
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-319-44895-4
Online ISBN:978-3-319-44896-1
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative