Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Mathematical Analysis and the Mathematics of Computation

  • Textbook
  • © 2016

Accessibility Information

Overview

Authors:
  1. Werner Römisch
    1. Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany

  2. Thomas Zeugmann
    1. Division of Computer Science, Hokkaido University, Sapporo, Japan

  • Many interdisciplinary applications, including support vector machines, kernel-based learning methods, pattern recognition, statistical learning theory, computer graphics, and approximation theory
  • Rich field experienced enormous development in recent decades, comprising numerical analysis and computational discrete mathematics
  • Book content tested in lectures, seminars, and discussions at Humboldt University and other institutions over decades
  • Includes supplementary material:sn.pub/extras
  • 17kAccesses

  • 2Citations

This is a preview of subscription content,log in via an institution to check access.

Access this book

eBook JPY 9723
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book JPY 12154
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Other ways to access

About this book

This book is a comprehensive, unifying introduction to the field of mathematical analysis and the mathematics of computing. It develops the relevant theory at a modern level and it directly relates modern mathematical ideas to their diverse applications.

The authors develop the whole theory. Starting with a simple axiom system for the real numbers, they then lay the foundations, developing the theory, exemplifying where it's applicable, in turn motivating further development of the theory. They progress from sets, structures, and numbers to metric spaces, continuous functions in metric spaces, linear normed spaces and linear mappings; and then differential calculus and its applications, the integral calculus, the gamma function, and linear integral operators. They then present important aspects of approximation theory, including numerical integration. The remaining parts of the book are devoted to ordinary differential equations, the discretization of operator equations, and numerical solutions of ordinary differential equations.

This textbook contains many exercises of varying degrees of difficulty, suitable for self-study, and at the end of each chapter the authors present more advanced problems that shed light on interesting features, suitable for classroom seminars or study groups. It will be valuable for undergraduate and graduate students in mathematics, computer science, and related fields such as engineering. This is a rich field that has experienced enormous development in recent decades, and the book will also act as a reference for graduate students and practitioners who require a deeper understanding of the methodologies, techniques, and foundations.

Similar content being viewed by others

Keywords

Table of contents (13 chapters)

  1. Front Matter

    Pages I-XXIII
  2. Sets, Structures, Numbers

    • Werner Römisch, Thomas Zeugmann
    Pages 1-46
  3. Metric Spaces

    • Werner Römisch, Thomas Zeugmann
    Pages 47-118
  4. Continuous Functions in Metric Spaces

    • Werner Römisch, Thomas Zeugmann
    Pages 119-156
  5. Linear Normed Spaces, Linear Operators

    • Werner Römisch, Thomas Zeugmann
    Pages 157-200
  6. The Differential Calculus

    • Werner Römisch, Thomas Zeugmann
    Pages 201-268
  7. Applications of the Differential Calculus

    • Werner Römisch, Thomas Zeugmann
    Pages 269-336
  8. The Integral Calculus

    • Werner Römisch, Thomas Zeugmann
    Pages 337-420
  9. Linear Integral Operators

    • Werner Römisch, Thomas Zeugmann
    Pages 421-428
  10. Inner Product Spaces

    • Werner Römisch, Thomas Zeugmann
    Pages 429-446
  11. Approximative Representation of Functions

    • Werner Römisch, Thomas Zeugmann
    Pages 447-524
  12. Ordinary Differential Equations

    • Werner Römisch, Thomas Zeugmann
    Pages 525-594
  13. Discretization of Operator Equations

    • Werner Römisch, Thomas Zeugmann
    Pages 595-614
  14. Numerical Solution of Ordinary Differential Equations

    • Werner Römisch, Thomas Zeugmann
    Pages 615-674
  15. Back Matter

    Pages 675-703

Reviews

“This textbook is mainly based on lectures, seminars and compositions read, taught and made by the authors at Humboldt University in Berlin and is intended as a four semester course. … this is a well-written textbook and I recommend it for undergraduate, graduate and Ph.D students in mathematics, computer science, engineering and other related fields.” (Sorin Gheorghe Gal, Mathematical Reviews, June, 2017)


“Römisch and Zeugmann’s Mathematical analysis and the mathematics of computation is a lucid introductory textbook that unites mathematical analysis with the mathematics of computation in a single volume. … It has many exercises and additional problems in each chapter to enhance the problem-solving ability of the student. … readership includes undergraduate and graduate students of mathematics, computing, and related fields such as engineering. It should also serve as useful reference material for others, given the continuous progress in this field.” (Computing Reviews, June, 2017)

“The book is written in a nicely readable style. It comes with plenty of carefully designed figures where color has been used in a well-thought-out way. Moreover, the text contains a large number of problems and exercises and many remarks describing the historical developments that have led to the current state of the art. I fully recommend it to be used by (beginning and advanced) students as material for self-study or by lecturers as a textbook.” (Kai Diethelm, Computing Reviews, May, 2017)


“This is a text for a first real analysis course. Its selling point is that it presents a wide variety of topics with a uniform notation and terminology, and the same level of abstraction.It also presents an integrated view of approximation and mathematical analysis. … I admire its goals and like its execution … .” (Allen Stenger, MAA Reviews, maa.org, March, 2017)

“The authors keep in touch with the necessities of undergraduate students by providing the theory of infinite series, the differential calculus in R and Rn, power series and elementary functions. … The material of the book is presented in a clear way with precise and understandable worked out proofs. … for computer science students the topics of the book go well beyond what they normally are willing to learn and also what they will need in their carreer.” (Rolf Dieter Grigorieff, zbMATH 1358.65001, 2017)


Authors and Affiliations

  • Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany

    Werner Römisch

  • Division of Computer Science, Hokkaido University, Sapporo, Japan

    Thomas Zeugmann

About the authors

Prof. Dr. Werner Römisch received his Dr. rer. nat. in 1976 and his habilitation in 1984, both from Humboldt-Universität zu Berlin. He is now an emeritus professor of Humboldt-Universität zu Berlin, Institut für Mathematik. His research interests are stochastic optimization with applications to power systems optimization and airline revenue management, and stochastic equations.

Prof. Dr. Thomas Zeugmann received his Dr. rer. nat. in mathematics in 1983 from Humboldt-Universität zu Berlin, and his habilitation in computer science from the Technische Universität Darmstadt in 1993. He was a professor in Kyushu University and Universität zu Lübeck; since 2004 he has been a professor at Hokkaido University. His research interests include algorithmic learning theory, stochastic algorithms, and parallel algorithms.

Accessibility Information

Accessibility information for this book is coming soon. We're working to make it available as quickly as possible. Thank you for your patience.

Bibliographic Information

  • Book Title:Mathematical Analysis and the Mathematics of Computation

  • Authors:Werner Römisch, Thomas Zeugmann

  • DOI:https://doi.org/10.1007/978-3-319-42755-3

  • Publisher:Springer Cham

  • eBook Packages:Computer Science,Computer Science (R0)

  • Copyright Information:Springer International Publishing Switzerland 2016

  • Hardcover ISBN:978-3-319-42753-9Published: 13 October 2016

  • Softcover ISBN:978-3-319-82655-4Published: 16 June 2018

  • eBook ISBN:978-3-319-42755-3Published: 04 October 2016

  • Edition Number:1

  • Number of Pages:XXIII, 703

  • Number of Illustrations:20 b/w illustrations, 32 illustrations in colour

  • Topics:Mathematics of Computing,Analysis

Publish with us

Back to top

Access this book

eBook JPY 9723
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book JPY 12154
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Other ways to access


[8]ページ先頭

©2009-2025 Movatter.jp