Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Formalization of Bing’s Shrinking Method in Geometric Topology

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 9791))

Included in the following conference series:

  • 578Accesses

Abstract

Bing’s shrinking method is a key technique for constructing homeomorphisms between topological manifolds in geometric topology. Applications of this method include the generalized Schoenflies theorem, the double suspension theorem for homology spheres, and the 4-dimensional Poincaré conjecture. Homeomorphisms obtained in this method are sometimes counter-intuitive and may even be pathological. This makes Bing’s shrinking method a good target of formalization by proof assistants. We report our formalization of this method in Coq/Ssreflect.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4804
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6006
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Carathéodory, C.: Mathematische Annalen (Springer, Berlin / Heidelberg) 73(2), 305–320 (1913)

    Google Scholar 

  2. Alexander, J.W.: An example of a simply connected surface bounding a region which is not simply connected. Proc. Nat. Acad. Sci. U.S.A.10(1), 8–10 (1924)

    Article  Google Scholar 

  3. Bing, R.H.: A homeomorphism between the 3-sphere and the sum of two solid horned spheres. Ann. Math.56, 354–362 (1952)

    Article MathSciNet MATH  Google Scholar 

  4. Brown, M.: A proof of the generalized Schoenflies theorem. Bull. Amer. Math. Soc.66, 74–76 (1960)

    Article MathSciNet MATH  Google Scholar 

  5. Edwards, R.D.: The topology of manifolds and cell-like maps. In: Proceedings of the ICM, Helsinki, pp. 111–127 (1978)

    Google Scholar 

  6. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom.17(3), 357–453 (1982)

    Article MathSciNet MATH  Google Scholar 

  7. Freedman, M.H.: Bing topology and Casson handles, notes by S. Behrens, Santa Barbara Lectures (2013)

    Google Scholar 

  8. Freedman, M.H., Quinn, F.: Topology of 4-Manifolds. PMS, vol. 39. Princeton University Press, Princeton (1990)

    MATH  Google Scholar 

  9. Mizar formalization of the Jordan curve theorem.http://mizar.uwb.edu.pl/jordan/

  10. Hales, T.: The Jordan curve theorem, formally and informally. Am. Math. Mon.114(10), 882–894 (2007)

    MathSciNet MATH  Google Scholar 

  11. BingShrinkingCriterion.https://github.com/CuMathInfo/Topology/tree/master/BingShrinkingCriterion

  12. Schepler, D.: Topology/v8.5 in coq-contribs.https://scm.gforge.inria.fr/anonscm/git/coq-contribs/coq-contribs.git

  13. https://github.com/c-corn/corn/tree/master/metric2

  14. http://www-sop.inria.fr/marelle/Guillaume.Cano/

  15. http://coquelicot.saclay.inria.fr/html/Coquelicot.Coquelicot.html

  16. “Alexander Horned Sphere” From MathWorld–A Wolfram Web Resource.http://mathworld.wolfram.com/AlexandersHornedSphere.html

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics and Informatics, Faculty of Science, Chiba University, Yayoi 1-33, Inage-ku, Chiba City, 263-0022, Japan

    Ken’ichi Kuga, Manabu Hagiwara & Mitsuharu Yamamoto

Authors
  1. Ken’ichi Kuga
  2. Manabu Hagiwara
  3. Mitsuharu Yamamoto

Corresponding author

Correspondence toKen’ichi Kuga.

Editor information

Editors and Affiliations

  1. Jacobs University Bremen, Bremen, Germany

    Michael Kohlhase

  2. Chalmers University, Göteborg, Sweden

    Moa Johansson

  3. National Institute of Standards and Technology, Gaithersburg, Maryland, USA

    Bruce Miller

  4. Microsoft Research, Redmond, Washington, USA

    Leonardo de Moura

  5. University of Waterloo, Waterloo, Ontario, Canada

    Frank Tompa

Rights and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kuga, K., Hagiwara, M., Yamamoto, M. (2016). Formalization of Bing’s Shrinking Method in Geometric Topology. In: Kohlhase, M., Johansson, M., Miller, B., de Moura, L., Tompa, F. (eds) Intelligent Computer Mathematics. CICM 2016. Lecture Notes in Computer Science(), vol 9791. Springer, Cham. https://doi.org/10.1007/978-3-319-42547-4_2

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4804
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6006
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp